全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Markerless Lung Tumor Motion Tracking by Dynamic Decomposition of X-Ray Image Intensity

DOI: 10.1155/2013/340821

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a new markerless tracking technique of lung tumor motion by using an X-ray fluoroscopic image sequence for real-time image-guided radiation therapy (IGRT). A core innovation of the new technique is to extract a moving tumor intensity component from the fluoroscopic image intensity. The fluoroscopic intensity is the superimposition of intensity components of all the structures passed through by the X-ray. The tumor can then be extracted by decomposing the fluoroscopic intensity into the tumor intensity component and the others. The decomposition problem for more than two structures is ill posed, but it can be transformed into a well-posed one by temporally accumulating constraints that must be satisfied by the decomposed moving tumor component and the rest of the intensity components. The extracted tumor image can then be used to achieve accurate tumor motion tracking without implanted markers that are widely used in the current tracking techniques. The performance evaluation showed that the extraction error was sufficiently small and the extracted tumor tracking achieved a high and sufficient accuracy less than 1?mm for clinical datasets. These results clearly demonstrate the usefulness of the proposed method for markerless tumor motion tracking. 1. Introduction In radiation therapy, to irradiate sufficient dose to tumors and avoid unnecessary dose to the surrounding healthy tissues are crucial to achieve significant treatment effects and reduce adverse effects. Stereotactic body radiation therapy (SBRT) can satisfy such clinical demand for accurate isocenter positioning to the static center of the target tumor volume [1]. Intrafractional tumor motion can, however, badly affect the accuracy of the irradiating position and additional margins should thus be designed to account for such geometric uncertainties [2, 3]. Inevitably, the larger margins cover the wider regions of surrounding healthy tissues. In this sense, motion management is necessary for effective treatment, especially for abdominal and thoracic tumors [2–4]. Indeed, such tumors can move several centimeter due to mostly respiratory and cardiac motions [5, 6]. To achieve highly accurate irradiation to moving tumors, tumor tracking to measure or monitor the motion can be an ideal direction. Image-guided techniques to capture the tumor motion [7–11] have thus been developed for the tumor tracking. A kV X-ray fluoroscopy is widely used for such image-guided radiation therapy (IGRT) because of its capability of direct position measurement of a target tumor inside the patient's body.

References

[1]  T. J. Dilling and S. E. Hoffe, “Stereotactic body radiation therapy: transcending the conventional to improve outcomes,” Cancer Control, vol. 15, no. 2, pp. 104–111, 2008.
[2]  S. Senan, O. Chapet, F. J. Lagerwaard, and R. K. Ten Haken, “Defining target volumes for non-small cell lung carcinoma,” Seminars in Radiation Oncology, vol. 14, no. 4, pp. 308–314, 2004.
[3]  S. Senan, D. de Ruysscher, P. Giraud, R. Mirimanoff, and V. Budach, “Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer,” Radiotherapy and Oncology, vol. 71, no. 2, pp. 139–146, 2004.
[4]  N. Homma, M. Sakai, H. Endo, M. Mitsuya, Y. Takai, and M. Yoshizawa, “A new motion management method for lung tumor tracking radiation therapy,” WSEAS Transactions on Systems, vol. 8, no. 4, pp. 471–480, 2009.
[5]  M. J. Murphy, “Tracking moving organs in real time,” Seminars in Radiation Oncology, vol. 14, no. 1, pp. 91–100, 2004.
[6]  C. W. Stevens, R. F. Munden, K. M. Forster et al., “Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 1, pp. 62–68, 2001.
[7]  H. Shirato, S. Shimizu, T. Shimizu, T. Nishioka, and K. Miyasaka, “Real-time tumour-tracking radiotherapy,” The Lancet, vol. 353, no. 9161, pp. 1331–1332, 1999.
[8]  Y. Takai, M. Mitsuya, K. Nemoto et al., “Development of a new linear accelerator mounted with dual fluoroscopy using amorphous silicon flat panel X-ray sensors to detect a gold seed in a tumor at real treatment position,” International Journal of Radiation Oncology*Biology*Physics, vol. 51, no. 3, supplement 1, p. 381, 2001.
[9]  R. I. Berbeco, S. B. Jiang, G. C. Sharp, G. T. Y. Chen, H. Mostafavi, and H. Shirato, “Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors,” Physics in Medicine and Biology, vol. 49, no. 2, pp. 243–255, 2004.
[10]  K. R. Britton, Y. Takai, M. Mitsuya, K. Nemoto, Y. Ogawa, and S. Yamada, “Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system,” Radiation Medicine, vol. 23, no. 1, pp. 14–24, 2005.
[11]  R. D. Wiersma, W. Mao, and L. Xing, “Combined kV and MV imaging for real-time tracking of implanted fiducial markers,” Medical Physics, vol. 35, no. 4, pp. 1191–1198, 2008.
[12]  P. J. Keall, A. D. Todor, S. S. Vedam et al., “On the use of EPID-based implanted marker tracking for 4D radiotherapy,” Medical Physics, vol. 31, no. 12, pp. 3492–3499, 2004.
[13]  X. Zhu, J. D. Bourland, Y. Yuan et al., “Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment,” Physics in Medicine and Biology, vol. 54, no. 17, pp. N393–N401, 2009.
[14]  H. Onishi and M. Hiraoka, Detailed Explanation of Extracranial Stereotactic Radiotherapy—Details of the Guidelines and Exposure Manual, Chugai-igakusya, Tokyo, Japan, 2006 (Japanese).
[15]  R. I. Berbeco, H. Mostafavi, G. C. Sharp, and S. B. Jiang, “Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers,” Physics in Medicine and Biology, vol. 50, no. 19, pp. 4481–4490, 2005.
[16]  H. Mostafavi, “Systems and Methods for Processing X-ray Images,” The United States Patent, #US 7,158,612 B2, 2007.
[17]  J. Meyer, A. Richter, K. Baier, J. Wilbert, M. Guckenberger, and M. Flentje, “Tracking moving objects with megavoltage portal imaging: a feasibility study,” Medical Physics, vol. 33, no. 5, pp. 1275–1280, 2006.
[18]  J. Wilbert, J. Meyer, K. Baier et al., “Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing,” Medical Physics, vol. 35, no. 9, pp. 3911–3921, 2008.
[19]  Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, “Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers,” Physics in Medicine and Biology, vol. 52, no. 3, article 015, pp. 741–755, 2007.
[20]  H. Endo, N. Homma, Y. Takai, and M. Yoshizawa, “Simultaneous estimation of lung tumor image and intrafractional motion without implanted markers using kV-X-ray fluoroscopy for image-guided radiotherapy,” Medical Physics, vol. 37, no. 6, p. 3157, 2010.
[21]  T. Okabe and K. Fujita, Medical Imaging and Engineering, Ishiyaku Publishers Inc., 2nd edition, 2004 Japanese.
[22]  E. de Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp. 700–703, 1987.
[23]  B. Srinivasa Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Transactions on Image Processing, vol. 5, no. 8, pp. 1266–1271, 1996.
[24]  K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi, “High-accuracy subpixel image registration based on phase-only correlation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 8, pp. 1925–1934, 2003.
[25]  X. Zhang, M. Abe, and M. Kawamata, “Reduction of computational cost of POC-based methods for displacement estimation in old film sequences,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E94-A, no. 7, pp. 1497–1504, 2011.
[26]  A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208, 2000.
[27]  D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods for practitioners,” IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 736–746, 2002.
[28]  N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F, vol. 140, no. 2, pp. 107–113, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413