全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing

DOI: 10.1155/2013/471682

Full-Text   Cite this paper   Add to My Lib

Abstract:

An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today. 1. Introduction Liver fibrosis is an important cause of mortality and morbidity and contributes substantially to increase health care costs in patient with chronic liver diseases [1]. Fibrosis can lead to cirrhosis, for which the complications such as hepatic decompensation, hepatocellular carcinoma, and portal hypertension involve growing public health concerns. Cirrhosis and chronic liver disease were the 10th leading cause of death for men and the 12th for women in the United States in 2001, leading to the death of about 27,000 people each year [2]. Cirrhosis was first considered as an irreversible process, but, with the growing understanding of hepatic fibrogenesis mechanisms, more effective treatments have been developed [3, 4]. However, the latter must be initiated at a specific and early stage in fibrous development, and their administration requires regular clinical followup. While histological analysis after liver biopsy is the gold standard for the diagnosis, inherent risk of a recognized morbidity and mortality renders this method unsuitable for clinical monitoring [5, 6]. Furthermore liver biopsies have other limitations such as interobserver variability and sampling errors [7]. It has been demonstrated that

References

[1]  N. H. Afdhal and D. Nunes, “Evaluation of liver fibrosis: a concise review,” American Journal of Gastroenterology, vol. 99, no. 6, pp. 1160–1174, 2004.
[2]  R. N. Anderson and B. L. Smith, “Deaths: leading causes for 2001,” National Vital Statistics Reports, vol. 52, no. 9, pp. 1–85, 2003.
[3]  K. Kazemi, B. Geramizadeh, S. Nikeghbalian et al., “Effect of D-penicillamine on liver fibrosis and inflammation in Wilson disease,” Experimental and Clinical Transplantation, vol. 6, no. 4, pp. 261–263, 2008.
[4]  E. J. Heathcote, M. L. Shiffman, W. G. E. Cooksley et al., “Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis,” The New England Journal of Medicine, vol. 343, no. 23, pp. 1673–1680, 2000.
[5]  F. Piccinino, E. Sagnelli, and G. Pasquale, “Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies,” Journal of Hepatology, vol. 2, no. 2, pp. 165–173, 1986.
[6]  J. F. Cadranel, P. Rufat, and F. Degos, “Practices of liver biopsy in France: results of a prospective nationwide survey,” Hepatology, vol. 32, no. 3, pp. 477–481, 2000.
[7]  J. Poniachik, D. E. Bernstein, K. R. Reddy et al., “The role of laparoscopy in the diagnosis of cirrhosis,” Gastrointestinal Endoscopy, vol. 43, no. 6, pp. 568–571, 1996.
[8]  Y. Billaud, O. Beuf, G. Desjeux, P. J. Valette, and F. Pilleul, “3D contrast-enhanced MR angiography of the abdominal aorta and its distal branches: interobserver agreement of radiologists in a routine examination,” Academic Radiology, vol. 12, no. 2, pp. 155–163, 2005.
[9]  R. Materne, A. M. Smith, F. Peeters et al., “Assessment of hepatic perfusion parameters with dynamic MRI,” Magnetic Resonance in Medicine, vol. 47, no. 1, pp. 135–142, 2002.
[10]  M. Hagiwara, H. Rusinek, V. S. Lee et al., “Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging—initial experience,” Radiology, vol. 246, no. 3, pp. 926–934, 2008.
[11]  B. E. Van Beers, R. Materne, L. Annet et al., “Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit,” Magnetic Resonance in Medicine, vol. 49, no. 4, pp. 692–699, 2003.
[12]  B. Leporq, J. Dumortier, F. Pilleul, and O. Beuf, “3D-liver perfusion MR imaging with the MS-325 blood pool agent: a non-invasive protocol to assess liver fibrosis,” Journal of Magnetic Resonance Imaging, vol. 35, pp. 1380–1387, 2012.
[13]  B. Leporq, O. Beuf, and F. Pilleul, “Perfusion MR imaging of the liver with a vascular contrast agent,” Journal de Radiologie, vol. 92, no. 3, pp. 257–261, 2011.
[14]  R. Lützkendorf, J. Bernarding, F. Hertel, F. Viezens, A. Thiel, and D. Krefting, “Enabling of grid based diffusion tensor imaging using a workflow implementation of FSL,” Studies in Health Technology and Informatics, vol. 147, pp. 72–81, 2009.
[15]  T. Glatard, R. S. Soleman, D. J. Veltman, A. J. Nederveen, and S. D. Olabarriaga, “Large-scale functional MRI study on a production grid,” Future Generation Computer Systems, vol. 26, no. 4, pp. 685–692, 2010.
[16]  French METAVIR Cooperative Study Group, “Intraobserver and interobserver variations in liver biopsies in patients with chronic hepatitis C,” Hepatology, vol. 20, pp. 15–20, 1994.
[17]  J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari, and M. B. Fornarino, “A data-driven workflow language for grids based on array programming principles,” in Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science (WORKS '09), pp. 1–10, November 2009.
[18]  T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and efficient workflow deployment of data-intensive applications on grids with moteur,” International Journal of High Performance Computing Applications, vol. 22, no. 3, pp. 347–360, 2008.
[19]  T. Glatard, C. Lartizien, B. Gibaud et al., “A virtual imaging platform for multi-modality medical image simulation,” IEEE Transactions on Medical Imaging, vol. 32, no. 1, pp. 110–118, 2013.
[20]  S. Camarasu-Pop, T. Glatard, J. T. Mo?cicki, H. Benoit-Cattin, and D. Sarrut, “Dynamic partitioning of GATE Monte-Carlo simulations on EGEE,” Journal of Grid Computing, vol. 8, no. 2, pp. 241–259, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133