全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Expression for Estimation of Leakage Inductance in E Core Transformer Using Energy Method

DOI: 10.1155/2012/635715

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a simpler and more accurate expression for estimation of leakage inductance in E core transformer, which is the most widely used transformer structure. The derived expression for leakage inductance accounts for the flux extending into air. The finite element method (FEM) analysis is made on the secondary shorted transformer to observe the H-field pattern. The results obtained from FEM analysis are used for approximating the field that is extending into air to derive an expression for leakage inductance. This expression is experimentally validated on prototype transformers of different core dimensions. 1. Introduction Transformer is one of the basic building blocks of many power converters. The following are some of the cases where accurate estimation of leakage inductance is required.(i)Different resonant converter topologies, discussed in [1–5], use parasitics of transformer as a part of resonant tank network. For designing power converter with such topologies, one requires accurate estimation of leakage inductance.(ii)In hard switched converters, in every cycle the energy stored in the parasitics appears as loss in converter. In estimation of efficiency of such converters, one needs to estimate leakage inductance before hand.(iii)For designing snubber circuits to limit device voltage during turn-off transients [6–8], one needs to estimate leakage inductance. These turn-off transients mainly occur due to energy stored in the leakage inductance of the transformer. Methods that are usually employed for estimation of leakage inductance are (i) energy method [8–13] and (ii) method of mutual fluxes. In energy method, the energy stored in magnetic field of the secondary shorted transformer is calculated and equated to where is the leakage inductance of the transformer when referred to primary, and is current flowing through primary. The -profile inside the coil is calculated using Ampere's law. The energy stored in magnetic field is calculated by evaluating the volume integral in (1): The expression derived for leakage inductance using energy method is independent of frequency. Hence, it does not consider any frequency-dependent effects on leakage inductance. The energy method is used for comparing leakage inductance, in different winding configurations. On the other hand, method of mutual fluxes uses Maxwell's equations to predict the leakage inductance more accurately at high frequencies. As this method accounts for frequency-dependent effects like eddy current losses and altered flux pattern due to eddy currents, it gives more accurate

References

[1]  S. D. Johnson, A. F. Witulski, and R. W. Erickson, “Comparison of resonant topologies in high-voltage dc applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 3, pp. 263–274, 1988.
[2]  A. K. S. Bhat, A. Biswas, and B. S. R. Iyengar, “Analysis and design of (LC)(LC)-type series-parallel resonant converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 3, pp. 1186–1193, 1995.
[3]  B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proceedings of the 17th Annual IEEE on Applied Power Electronics Conference and Exposition Conference (APEC '02), vol. 2, pp. 1108–1112, Institute of Electrical and Electronics Engineers, 2002.
[4]  J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage-switched pwm converter,” in Proceedings of the 5th Annual Applied Power Electronics Conference and Exposition (APEC '90), pp. 275–284, Institute of Electrical and Electronics Engineers, 1990.
[5]  J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proceedings of the 16th Annual Applied Power Electronics Conference and Exposition (APEC '01), vol. 2, pp. 728–735, Institute of Electrical and Electronics Engineers, 2001.
[6]  P. C. Todd, “Snubber circuits: theory, design and application,” in Unitrode-Power Supply Design Seminar, 1993.
[7]  William McMurray, “Selection of snubbers and clamps to optimize the design of transistor switching converters,” IEEE Transactions on Industry Applications, vol. IA-16, no. 4, pp. 513–523, 1980.
[8]  N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, vol. 1, John Wiley & Sons, New York, NY, USA, 2003.
[9]  R. Doebbelin, M. Benecke, and A. Lindemann, “Calculation of leakage inductance of core-type transformers for power electronic circuits,” in Proceedings of the 13th Power Electronics and Motion Control Conference (EPE-PEMC '08), pp. 1280–1286, September 2008.
[10]  A. A. Dauhajre, Modelling and estimation of leakage phenomena in magnetic circuits, Ph.D. thesis, California Institute of Technology, Pasadena, Calif, USA, 1986.
[11]  W. T. McLyman and C. W. T. McLyman, Transformer and Inductor Design Handbook, Marcel Dekker, New York, NY, USA, 2004.
[12]  Z. Ouyang, O. C. Thomsen, and M. Andersen, “The analysis and comparison of leakage inductance in different winding arrangements for planar transformer,” in Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS '09), pp. 1143–1148, November 2009.
[13]  R. Doebbelin, R. Herms, C. Teichert, W. Schaetzing, and A. Lindemann, “Analysis methods and design of transformers with low leakage inductance for pulsed power applications,” in Proceedings of the European Conference on Power Electronics and Applications, pp. 1–7, September 2007.
[14]  W. G. Hurley and D. J. Wilcox, “Calculation of leakage inductance in transformer windings,” IEEE Transactions on Power Electronics, vol. 9, no. 1, pp. 121–126, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413