全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integration between Compost, Trichoderma harzianum and Essential Oils for Controlling Peanut Crown Rot under Field Conditions

DOI: 10.1155/2013/262130

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of T. harzianum and some essential oils alone or in combination with compost on the peanut crown rot disease under field conditions was evaluated. Under laboratory conditions, results indicated that all concentrations of essential oils significantly reduced the growth of A. niger. Complete reduction was obtained with thyme and lemongrass oils at 0.5%. All T. harzianum isolates significantly reduced the growth of A. niger. The highest reduction was obtained with isolate no. 1 which reduced the growth by 81.1%. Under field conditions, results indicated that all treatments significantly reduced the peanut crown rot disease. The highest reduction was obtained with combined treatments (compost + T. harzianum + thyme and compost + T. harzianum + lemongrass) which reduced the disease incidence at both pre- and post-emergence growth stages, respectively. Similar trend corresponding to the previous treatments significantly increased the peanut yield which calculated as an increase in yield more than 75.0 and 80.0 during two growing seasons, respectively. It could be suggested that combined treatment between biocompost and essential oils might be used commercially for controlling peanut crown rot disease under field conditions. 1. Introduction Peanut (Arachis hypogaea L.) is attacked by certain soil borne fungi causing root diseases. The main pathogen responsible for crown rot incidence of peanut was reported to be Aspergillus niger [1]. Crown rot of peanut was found in the sandy and reclaimed soils in Egypt [2, 3]. Also, it was reported that the fungus Aspergillus niger may cause seed rot and preemergence dampingoff of seedlings; the most obvious symptom is the sudden wilting of young plants [4–6]. The economic importance of Aspergillus crown rot is difficult to assess. Generally scattered plants are affected, although stand losses of 50% have been reported in isolated fields [7]. In Egypt, due to the economic importance of peanut, the farmers repeat planting even in the same land, which leads to a high buildup of pathogens, causing serious losses that could reach up to 18% [3]. As the management strategy followed by the farmers was considered to be an unwise, intensive use of fungicides, this strategy was not a satisfactory solution for controlling root rot disease. An investigation of crown rot disease is considered particularly important in light of its wide prevalence in Egypt, particularly in sandy soils. The application of biological controls using antagonistic microorganisms has proved to be successful for controlling various plant diseases in

References

[1]  T. Suzui and T. Makino, “Occurrence of Aspergillus crown rot of peanut caused by Aspergillus niger van Tieghem,” Annals of the Phytopathological Society of Japan, vol. 46, pp. 46–48, 1980.
[2]  M. A. Nofal, H. I. Seif-El-Nasr, M. M. Diab, M. A. A. El-Nagar, and S. I. A. El-Said, “Effect of the systemic fungicides benlate and vitavax-captan on Aspergillus crown rot incidence of peanut plants,” Annals of Agricultural Science, vol. 35, pp. 407–415, 1990.
[3]  Anonymous, Yearbook of Statistics of Ministry of Agriculture, Agricultural Economical and Statistical Department, Cairo, Egypt, 2010, (Arabic).
[4]  A. Ciegler and R. F. Vesonder, “Microbial food and feed toxicants: fungal toxins,” in The CRC Handbook of Microbiology, vol. 8, p. 19126, CRC Press, Boca Raton, Fla, USA, 1987.
[5]  D. F. Farr, G. F. Bills, G. P. Chamuris, and A. Y. Rossman, Fungi on Plants and Plant Products in the United States, APS Press, St. Paul, Minn, USA, 1989.
[6]  D. L. Hawksworth, “Problems and prospects for improving the stability of names in Aspergillus and Penicillium,” in Modern Concepts in Penicillium and Aspergillus Classification, R. A. Samson and J. I. Pitt, Eds., vol. 185 of NATO Advanced Science Institute Series, Series A: Life Sciences, Plenum Press, New York, NY, USA, 1990.
[7]  H. Damicone and H. Melouk, Soilborne Diseases of Peanut, EPP-7664, Oklahoma Cooperative Extension Service, 1990, http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-2617/EPP-7664web.pdf.
[8]  A. Sivan and I. Chet, “Microbial control of plant disease,” in Environmental Microbiology, R. Mitchell, Ed., pp. 335–354, Wiley, New York, NY, USA, 1992.
[9]  E. Sharon, M. Bar-Eyal, I. Chet, A. Herrera-Estrella, O. Kleifeld, and Y. Spiegel, “Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum,” Phytopathology, vol. 91, no. 7, pp. 687–693, 2001.
[10]  S. Rose, M. Parker, and Z. K. Punja, “Efficacy of biological and chemical treatments for control of Fusarium root and tem rot on greenhouse cucumber,” Plant Disease, vol. 87, no. 12, pp. 1462–1470, 2003.
[11]  M. Shoresh, I. Yedidia, and I. Chet, “Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203,” Phytopathology, vol. 95, no. 1, pp. 76–84, 2005.
[12]  L. E. Horst, J. Locke, C. R. Krause, R. W. McMahon, L. V. Madden, and H. A. J. Hoitink, “Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes,” Plant Disease, vol. 89, no. 11, pp. 1195–1200, 2005.
[13]  H. A. J. Hoitink, L. V. Madden, and A. E. Dorrance, “Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality,” Phytopathology, vol. 96, no. 2, pp. 186–189, 2006.
[14]  R. D. Lumsden, J. A. Lewis, and P. D. Millner, “Effect of composted sewage sludge on several soilborne pathogens and diseases,” Phytopathology, vol. 73, no. 11, pp. 1543–1548, 1983.
[15]  H. A. J. Hoitink and M. J. Boehm, “Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon,” Annual Review of Phytopathology, vol. 37, pp. 427–446, 1999.
[16]  H. A. J. Hoitink and P. C. Fahy, “Basis for the control of soilborne plant pathogens with composts,” Annual Review of Phytopathology, vol. 24, pp. 93–114, 1986.
[17]  L. Cotxarrera, M. I. Trillas-Gay, C. Steinberg, and C. Alabouvette, “Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato,” Soil Biology and Biochemistry, vol. 34, no. 4, pp. 467–476, 2002.
[18]  C. Borrero, M. I. Trillas, J. Ordovás, J. C. Tello, and M. Avilés, “Predictive factors for the suppression of fusarium wilt of tomato in plant growth media,” Phytopathology, vol. 94, no. 10, pp. 1094–1101, 2004.
[19]  M. I. Trillas, E. Casanova, L. Cotxarrera, J. Ordovás, C. Borrero, and M. Avilés, “Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings,” Biological Control, vol. 39, no. 1, pp. 32–38, 2006.
[20]  J. H. S. Ferreira, F. N. Matthee, and A. C. Thomas, “Biological control of Eutypa lata on Grapevine by an antagonistic strain of Bacillus subtilis,” Phytopathology, vol. 81, pp. 283–287, 1991.
[21]  M. M. Abdel-Kader, “Field application of Trichoderma harzia?num as biocide for control of bean root rot disease,” Egyptian Journal of Phytopathology, vol. 25, pp. 19–25, 1997.
[22]  SAS, Statistical Analysis System. User's Guide: Statistics (PC-Dos 6.04), SAS Institute, Cary, NC, USA, 1988.
[23]  J. Neler, W. Wassermann, and M. H. Kutner, Applied Linear Statistical Models. Regression, Analysis of Variance and Experimental Design, Richard D. Irwin, Homewood, Ill, USA, 2nd edition, 1985.
[24]  S. A. H. Naqvi, M. S. Y. Khan, and S. B. Vohora, “Anti-bacterial, anti-fungal and anthelmintic investigations on Indian medicinal plants,” Fitoterapia, vol. 62, no. 3, pp. 221–228, 1991.
[25]  G. G. F. Nascimento, J. Locatelli, P. C. Freitas, and G. L. Silva, “Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria,” Brazilian Journal of Microbiology, vol. 31, no. 4, pp. 247–256, 2000.
[26]  G. J. E. Nychas, “Natural antimicrobial from plants,” in New Methods of Food Preservation, G. W. Gould, Ed., pp. 235–258, CRC Press, Londres, UK, 1996.
[27]  A. Alefyah and M. H. Avice, “The fungicidal properties of plant extracts and essential oils,” in Plant Pathology: Global Perspectives of an Applied Science, BSPP Presidential Meeting, 1997.
[28]  J. Del Campo, C. Nguyen-The, M. Sergent, and M. J. Amiot, “Determination of the most bioactive phenolic compounds from rosemary against Listeria monocytogenes: influence of concentration, pH, and NaCl,” Journal of Food Science, vol. 68, no. 6, pp. 2066–2071, 2003.
[29]  J. Kim, M. R. Marshall, and C. I. Wei, “Antibacterial activity of some essential oil components against five foodborne pathogens,” Journal of Agricultural and Food Chemistry, vol. 43, no. 11, pp. 2839–2845, 1995.
[30]  N. S. El-Mougy and M. M. Abdel-Kader, “Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens,” Australasian Plant Pathology, vol. 37, no. 5, pp. 464–471, 2008.
[31]  N. S. El-Mougy, M. M. Abdel-Kader, S. M. Lashin, and M. D. A. Aly, “Evaluating survival and antagonistic activity of introduced bio-agents to the soil under greenhouse conditions,” Journal of Applied Sciences Research, vol. 8, no. 4, pp. 2401–2411, 2012.
[32]  W. J. Janisiewicz, J. Usall, and B. Bors, “Nutritional enhancement of biocontrol of blue mold on apples,” Phytopathology, vol. 82, pp. 1364–1370, 1992.
[33]  W. J. Janisiewicz, W. S. Conway, D. M. Glenn, and C. E. Sams, “Integrating biological control and calcium treatment for controlling postharvest decay of apples,” HortScience, vol. 33, no. 1, pp. 105–109, 1998.
[34]  A. L. Siddaramaiah, K. S. K. Prasad, and R. K. Hedge, “Effectiveness of seed dressiong chemicals against crown rot of groundnut,” Pesticides, vol. 13, pp. 28–29, 1979.
[35]  M. A. A. El-Nagar, S. I. A. El-Said, M. M. Diab, and F. M. Maklad, “Effect of using some fungicides and seed inoculation with Rhizobium lupini on controlling crown rot disease incidence and plant growth of peanut crop,” African Journal of Agricultural Sciences, vol. 17, pp. 199–207, 1990.
[36]  P. Warrior, K. Kondru, V. Preeti, and P. Vasudevan, “Formulation of biocontrol agents for pest and disease management,” in Biological Control of Crop Disease, S. S. Gnanamanickam, Ed., Marcel Dekker, New York, NY, USA, 2002.
[37]  U. Conrath, C. M. J. Pieterse, and B. Mauch-Mani, “Priming in plant-pathogen interactions,” Trends in Plant Science, vol. 7, no. 5, pp. 210–216, 2002.
[38]  M. Wisniewski, C. Wilson, A. El-Ghaouth, and S. Droby, “Nonchemical approaches to postharvest disease control,” Acta Horticulturae, vol. 553, pp. 407–412, 2001.
[39]  W. J. Janisiewicz and L. Korsten, “Biological control of postharvest diseases of fruits,” Annual Review of Phytopathology, vol. 40, pp. 411–441, 2002.
[40]  S. Droby, M. Wisniewski, A. El-Ghaouth, and C. Wilson, “Biological control of postharvest diseases of fruit and vegetables: current achievements and future challenges,” Acta Horticulturae, vol. 628, pp. 703–713, 2003.
[41]  S. Droby, “Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials,” Acta Horticulturae, vol. 709, pp. 45–51, 2006.
[42]  H. A. J. Hoitink, A. F. Schmitthener, and L. J. Herr, “Composted bark for control of root rot in ornamentals,” Ohio Reporter, vol. 60, pp. 25–26, 1975.
[43]  A. K. Singh, A. Dikshit, M. L. Sharma, and S. N. Dixit, “Fungitoxic activity of some essential oils,” Economic Botany, vol. 34, no. 2, pp. 186–190, 1980.
[44]  A. Akgul and M. Kivanc, “Inhibitory effects of selected Turkish spices and oregano components on some foodborne fungi,” International Journal of Food Microbiology, vol. 6, no. 3, pp. 259–261, 1988.
[45]  A. Kumar and S. C. Tripathi, “Evaluation of the leaf juice of some higher plants for their toxicity against soil borne pathogens,” Plant and Soil, vol. 132, no. 2, pp. 297–301, 1991.
[46]  U. P. Singh, V. B. Chauhan, K. G. Wagner, and A. Kumas, “Effect of ajoene, a compound derived from garlic (Allium sativum), on Phytophthora drechsleri f. sp. Cajani,” Mycologia, vol. 84, pp. 105–108, 1992.
[47]  B. J. Juven, J. Kanner, F. Schved, and H. Weisslowicz, “Factors that interact with the antibacterial action of thyme essential oil and its active constituents,” Journal of Applied Bacteriology, vol. 76, no. 6, pp. 626–631, 1994.
[48]  R. Lanciotti, A. Gianotti, F. Patrignani, N. Belletti, M. E. Guerzoni, and F. Gardini, “Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits,” Trends in Food Science and Technology, vol. 15, no. 3-4, pp. 201–208, 2004.
[49]  S. Mitra and B. Nandi, “Biodegraded agro industrial wastes as soil amendments for plant growth,” Journal of Mycopathology Research, vol. 32, pp. 101–109, 1994.
[50]  M. Alexander, “Ecology of soil micro-organisms,” in Microbial Ecology, M. Alexander, Ed., pp. 207–223, John Wiley and Sons, New York, NY, USA, 1971.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413