全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tetrazolium/Formazan Test as an Efficient Method to Determine Fungal Chitosan Antimicrobial Activity

DOI: 10.1155/2013/753692

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fungal chitosan was extracted from Aspergillus niger mycelia. The produced chitosan was characterized with deacetylation degree of 89.2%, a molecular weight of 2.4 × 104?Da, and 96.0% solubility in 1% acetic acid solution. The antibacterial activity of fungal chitosan was evaluated against two foodborne pathogens, that is, Salmonella typhimurium and Staphylococcus aureus, using the established antibacterial assays, for example, zone of growth inhibition and agar plat count tests, and using 2,3,5,-triphenyltetrazolium chloride (TTC) as chromogenic marker for qualitative and quantitative determining of antibacterial potentiality. The TTC (0.5% w/v) was added, at concentration of 10%, to cultured broth, containing chitosan with different concentrations then the formed formazan was separated. The formation of red formazan could be considered as a qualitative indication for antibacterial activity, whereas the measurement of color intensity for the resuspended red formazan, using spectrophotometer at 480?nm, provided a quantitative evidence for the strength of the used antibacterial agent. Regarding the rapidity, technical simplicity, and cost-effectiveness, TTC assay could be recommended as an efficient alternative method for qualitative and quantitative determination of chitosan antibacterial activity and could be suggested for general evaluation of antibacterial agents. 1. Introduction Chitosan is a cationic polysaccharide consisted of many monosaccharide units of β-(1,4) linked 2-amino-2-deoxy-D-glucopyranose. The innocuous biodegradable and bioeffective nature of chitosan recommends its use in many fields of biotechnology, food industry, cosmetology, agriculture, and pharmacology [1–3]. Chitosan can be extracted from the cell wall of fungi, particularly zygomycetes. The production of chitosan from fungal cell walls has many advantages such as independence of seasonal factor and wide-scale production. The extraction process is more simple and cheap resulting in a reduction in time and cost required for production [4]. The antimicrobial materials are widely used in industry, community, and private settings to prevent microbial infection and contamination. To obtain biocidal effect without releasing biocides into the environment, natural antimicrobials, like chitosan, are highly recommended to be applied. The antimicrobial activity of chitosan is a hot research topic and there are several articles dealing with it and its derivatives [2, 3, 5–7]. Moreover, chitosan has numerous advantages over other chemical disinfectants since it possesses a stronger

References

[1]  H. Liu, Y. Du, X. Wang, and L. Sun, “Chitosan kills bacteria through cell membrane damage,” International Journal of Food Microbiology, vol. 95, no. 2, pp. 147–155, 2004.
[2]  A. A. Tayel, S. Moussa, K. Opwis, D. Knittel, E. Schollmeyer, and A. Nickisch-Hartfiel, “Inhibition of microbial pathogens by fungal chitosan,” International Journal of Biological Macromolecules, vol. 47, no. 1, pp. 10–14, 2010.
[3]  S. Moussa, A. Ibrahim, A. Okba, H. Hamza, K. Opwis, and E. Schollmeyer, “Antibacterial action of acetic acid soluble material isolated from Mucor rouxii and its application onto textile,” International Journal of Biological Macromolecules, vol. 48, no. 5, pp. 736–741, 2011.
[4]  E. I. Rabea, M. E. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003.
[5]  S. Lim and S. M. Hudson, “Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals,” Journal of Macromolecular Science—Polymer Reviews, vol. 43, no. 2, pp. 223–269, 2003.
[6]  A. A. Tayel, S. H. Moussa, W. F. El-Tras, N. M. Elguindy, and K. Opwis, “Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste,” International Journal of Biological Macromolecules, vol. 49, no. 2, pp. 241–245, 2011.
[7]  A. A. Tayel, S. Moussa, W. F. El-Tras, D. Knittel, K. Opwis, and E. Schollmeyer, “Anticandidal action of fungal chitosan against Candida albicans,” International Journal of Biological Macromolecules, vol. 47, no. 4, pp. 454–457, 2010.
[8]  Y. Li, X. G. Chen, N. Liu et al., “Physicochemical characterization and antibacterial property of chitosan acetates,” Carbohydrate Polymers, vol. 67, no. 2, pp. 227–232, 2007.
[9]  M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010.
[10]  J. H. Jorgensen, J. D. Turnidge, and J. A. Washington, “Antibacterial susceptibility tests: dilution and disk diffusion methods,” in Manual of Clinical Microbiology, pp. 1526–1543, ASM Press, Washington, DC, USA, 7th edition, 1999.
[11]  C. Valgas, S. M. De Souza, E. F. A. Smania, and A. Smania Jr., “Screening methods to determine antibacterial activity of natural products,” Brazilian Journal of Microbiology, vol. 38, no. 2, pp. 369–380, 2007.
[12]  H. M. Wehr and J. H. Frank, Standard Methods for the Microbiological Examination of Dairy Products, APHA Inc., Washington, DC, USA, 17th edition, 2004.
[13]  A. D. Eaton, L. S. Clesceri, A. E. Greenberg, et al., Standard Methods for the Examination of Water and Wastewater, APHA, Washington, DC, USA, 21st edition, 2005.
[14]  H. Barreteau, L. Mandoukou, I. Adt, I. Gaillard, B. Courtois, and J. Courtois, “A rapid method for determining the antimicrobial activity of novel natural molecules,” Journal of Food Protection, vol. 67, no. 9, pp. 1961–1964, 2004.
[15]  A. Sundsfjord, G. S. Simonsen, B. C. Haldorsen et al., “Genetic methods for detection of antimicrobial resistance,” APMIS, vol. 112, no. 11-12, pp. 815–837, 2004.
[16]  AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, Association of Official Analytical Chemists, Arlington, Va, USA, 15th edition, 1990.
[17]  D. H. Davies and E. R. Hayes, “Determination of the degree of acetylation of chitin and chitosan,” Methods in Enzymology, vol. 161, no. C, pp. 442–446, 1988.
[18]  Y. Chung, H. Wang, Y. Chen, and S. Li, “Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens,” Bioresource Technology, vol. 88, no. 3, pp. 179–184, 2003.
[19]  S. Chatterjee, M. Adhya, A. K. Guha, and B. P. Chatterjee, “Chitosan from Mucor rouxii: production and physico-chemical characterization,” Process Biochemistry, vol. 40, no. 1, pp. 395–400, 2005.
[20]  J. Je and S. Kim, “Chitosan derivatives killed bacteria by disrupting the outer and inner membrane,” Journal of Agricultural and Food Chemistry, vol. 54, no. 18, pp. 6629–6633, 2006.
[21]  J. N. Eloff, “A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria,” Planta Medica, vol. 64, no. 8, pp. 711–713, 1998.
[22]  L. Caviedes, J. Delgado, and R. H. Gilman, “Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 40, no. 5, pp. 1873–1874, 2002.
[23]  G. Abate, A. Aseffa, A. Selassie et al., “Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 42, no. 2, pp. 871–873, 2004.
[24]  F. P. Altman, “Tetrazolium salts and formazans,” Progress in Histochemistry and Cytochemistry, vol. 9, no. 3, pp. 1–56, 1976.
[25]  S. M. Thom, R. W. Horobin, E. Seidler, and M. R. Barer, “Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity,” Journal of Applied Bacteriology, vol. 74, no. 4, pp. 433–443, 1993.
[26]  E. I. Kvasnikov, L. N. Gerasimenko, and Zh. Tabarovskaia, “Use of 2, 3, 5-triphenyl tetrazolium chloride for rapid detection of mesophilic anaerobic bacteria in the canning industry,” Voprosy Pitaniia, no. 6, pp. 62–65, 1974.
[27]  N. Yamane, T. Oiwa, T. Kiyota et al., “Multicenter evaluation of a colorimetric microplate antimycobacterial susceptibility test: comparative study with the NCCLS M24-P,” Rinsho Byori, vol. 44, no. 5, pp. 456–464, 1996.
[28]  R. N. Mshana, G. Tadesse, G. Abate, and H. Mi?rner, “Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant: Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 36, no. 5, pp. 1214–1219, 1998.
[29]  S. Lee, D. H. Kong, S. H. Yun et al., “Evaluation of a modified antimycobacterial susceptibility test using Middlebrook 7H10 agar containing 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride,” Journal of Microbiological Methods, vol. 66, no. 3, pp. 548–551, 2006.
[30]  D. M. Yajko, J. J. Madej, M. V. Lancaster et al., “Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 33, no. 9, pp. 2324–2327, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413