Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB) matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium. 1. Introduction To introduce additional functionality in a biodegradable polyhydroxybutyrate (PHB) matrix, polyacrylic acid (PAA) nanogels were incorporated to form a hybrid solid-gel nanocomposite. This highly designed material structure approach is in line with recent developments in the biomaterials field. Biodegradable materials have long been investigated for use in tissue engineering and drug delivery, as seen from literature [1–3], but attention has turned towards structured and/or multifunctional materials [3, 4]. One material class that has been widely investigated for use in biomedical applications is polyhydroxyalkanoates (PHA), as it incorporates a range of naturally occurring biocompatible aliphatic polyesters, including PHB [5]. The characteristics and material properties of different PHA vary greatly, for example, mechanical properties and degradation rates can be tailored by the monomer composition [2, 3, 5]. When it comes to PHB it has a strong tendency for crystallization [5] and has a slow biodegradation rate compared to most biodegradable polyesters [6]. With regard to mechanical properties it is hard and brittle, where the brittleness is a disadvantage
References
[1]
M. Chasin and R. Langer, Eds., Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, NY, USA, 1990.
[2]
M. I. Sabir, X. Xu, and L. Li, “A review on biodegradable polymeric materials for bone tissue engineering applications,” Journal of Materials Science, vol. 44, no. 21, pp. 5713–5724, 2009.
[3]
Y. Yang and A. J. El Haj, “Biodegradable scaffolds—delivery systems for cell therapies,” Expert Opinion on Biological Therapy, vol. 6, no. 5, pp. 485–498, 2006.
[4]
M. Larsson, W. C. Huang, M. H. Hsiao et al., “Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids,” Progress in Polymer Science, vol. 38, no. 9, pp. 1307–1328, 2013.
[5]
S. K. Misra, S. P. Valappil, I. Roy, and A. R. Boccaccini, “Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications,” Biomacromolecules, vol. 7, no. 8, pp. 2249–2258, 2006.
[6]
A. Bergstrand, H. Andersson, J. Cramby, K. Sott, and A. Larsson, “Preparation of porous poly(3-Hydroxybutyrate) films by water-droplet templating,” Journal of Biomaterials and Nanobiotechnology, vol. 3, no. 4, pp. 431–439, 2012.
[7]
R. N. Reusch, A. W. Sparrow, and J. Gardiner, “Transport of poly-β-hydroxybutyrate in human plasma,” Biochimica et Biophysica Acta, vol. 1123, no. 1, pp. 33–40, 1992.
[8]
T. Saito, K. Tomita, K. Juni, and K. Ooba, “In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat,” Biomaterials, vol. 12, no. 3, pp. 309–312, 1991.
[9]
C. Doyle, E. T. Tanner, and W. Bonfield, “In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite,” Biomaterials, vol. 12, no. 9, pp. 841–847, 1991.
[10]
A. Zonari, S. Novikoff, N. R. P. Electo et al., “Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh,” PLoS ONE, vol. 7, no. 4, Article ID e35422, 2012.
[11]
E. C. Carlo, A. P. B. Borges, R. J. Del Carlo et al., “Comparison of in vivo properties of hydroxyapatite-polyhydroxybutyrate composites assessed for bone substitution,” Journal of Craniofacial Surgery, vol. 20, no. 3, pp. 853–859, 2009.
[12]
P.-N. Mohanna, R. C. Young, M. Wiberg, and G. Terenghi, “A composite pol-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs,” Journal of Anatomy, vol. 203, no. 6, pp. 553–565, 2003.
[13]
M. ?berg, C. Ljungberg, E. Edin et al., “Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: a prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 11, pp. 1503–1509, 2009.
[14]
M. T. Khorasani, S. A. Mirmohammadi, and S. Irani, “Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: fabrication and in vitro assay,” International Journal of Polymeric Materials, vol. 60, no. 8, pp. 562–575, 2011.
[15]
C. Zhijiang, “Biocompatibility and biodegradation of novel PHB porous substrates with controlled multi-pore size by emulsion templates method,” Journal of Materials Science, vol. 17, no. 12, pp. 1297–1303, 2006.
[16]
M. Larsson, S. Gustafsson, E. Olsson, and A. Larsson, “Effect of calcium neutralization on elastic and swelling properties of crosslinked poly(acrylic acid)—correlation to inhomogeneities and phase behaviour,” e-Polymers, vol. 9, no. 1, pp. 1683–1696, 2013.
[17]
R. C. Rowe, P. J. Sheskey, and M. E. Quinn, Eds., Handbook of Pharmaceutical Excipients, Pharmacutical Press and American Pharmacist Association, Chicago, Ill, USA, 6th edition, 2009.
[18]
T. K. De and A. S. Hoffman, “An ophthalmic formulation of a beta-adrenoceptor antagonist, levobetaxolol, using poly(acrylic acid) nanoparticles as carrier: loading and release studies,” Journal of Bioactive and Compatible Polymers, vol. 16, no. 1, pp. 20–31, 2001.
[19]
T. K. De and A. S. Hoffman, “A reverse microemulsion polymerization method for preparation of bioadhesive polyacrylic acid nanoparticles for mucosal drug delivery: loading and release of timolol maleate,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 29, no. 1, pp. 31–46, 2001.
[20]
R. Melinda Molnar, M. Bodnar, J. F. Hartmann, and J. Borbely, “Preparation and characterization of poly(acrylic acid)-based nanoparticles,” Colloid and Polymer Science, vol. 287, no. 6, pp. 739–744, 2009.
[21]
M. H. Hsiao, M. Larsson, A. Larsson et al., “Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide,” Journal of Controlled Release, vol. 161, no. 3, pp. 942–948, 2012.
[22]
L.-J. Lin, M. Larsson, and D.-M. Liu, “A novel dual-structure, self-healable, polysaccharide based hybrid nanogel for biomedical uses,” Soft Matter, vol. 7, no. 12, pp. 5816–5825, 2011.
[23]
L. Zhao, L. Zhu, F. Liu et al., “pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel,” International Journal of Pharmaceutics, vol. 410, no. 1-2, pp. 83–91, 2011.
[24]
P. Clément-Lacroix, M. Ai, F. Morvan et al., “Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17406–17411, 2005.
[25]
C. M. Hedgepeth, L. J. Conrad, J. Zhang, H.-C. Huang, V. M. Y. Lee, and P. S. Klein, “Activation of the Wnt signaling pathway: a molecular mechanism for lithium action,” Developmental Biology, vol. 185, no. 1, pp. 82–91, 1997.
[26]
Y. Chen, H. C. Whetstone, A. C. Lin et al., “Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing,” PLoS Medicine, vol. 4, no. 7, article e249, 2007.
[27]
F. Kugimiya, H. Kawaguchi, S. Ohba et al., “GSK-3β controls osteogenesis through regulating Runx2 activity,” PLoS ONE, vol. 2, no. 9, article e837, 2007.
[28]
G. Van den Mooter, C. Samyn, and R. Kinget, “Characterization of colon-specific azo polymers: a study of the swelling properties and the permeability of isolated polymer films,” International Journal of Pharmaceutics, vol. 111, no. 2, pp. 127–136, 1994.
[29]
L. Masaro and X. X. Zhu, “Physical models of diffusion for polymer solutions, gels and solids,” Progress in Polymer Science, vol. 24, no. 5, pp. 731–775, 1999.
[30]
M. Larsson, J. Hj?rtstam, and A. Larsson, “Novel nanostructured microfibrillated cellulose-hydroxypropyl methylcellulose films with large one-dimensional swelling and tunable permeability,” Carbohydrate Polymers, vol. 88, no. 2, pp. 763–771, 2012.