全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Incorporated W Roles on Microstructure and Properties of W-C:H Films by a Hybrid Linear Ion Beam Systems

DOI: 10.1155/2013/530959

Full-Text   Cite this paper   Add to My Lib

Abstract:

W-incorporated diamond-like carbon (W-C:H) films were fabricated by a hybrid beams system consisting of a DC magnetron sputtering and a linear ion source. The W concentration (1.08~31.74 at.%) in the film was controlled by varying the sputtering current. The cross-sectional topography, composition, and microstructure of the W-C:H films were investigated by SEM, XPS, TEM, and Raman spectroscopy. The mechanical and tribological properties of the films as a function of W concentration were evaluated by a stress-tester, nanoindentation, and ball-on-disk tribometer, respectively. The results showed that films mainly exhibited the feature of amorphous carbon when W concentration of the films was less than 4.38 at.%, where the incorporated W atoms would be bonded with C atoms and resulted in the formation of nanoparticles. The W-C:H film with 4.38 at.% W concentration showed a minimum value of residual compressive stress, a higher hardness, and better tribological properties. Beyond this W concentration range, both the residual stress and mechanical properties were deteriorated due to the growth of tungsten carbide nanoparticles in the carbon matrix. 1. Introduction Diamond-like carbon film (DLC) is a metastable form of amorphous carbon with a certain dominant sp3 bonding. Due to its unique properties such as high hardness, low friction coefficient, good chemical inertness, and the optical transparency in a wide range of VIS-IR, DLC film has been used as protective coatings in many industrial fields [1]. However, high residual stress is the major drawback of DLC films for its wider practical application [2–6]. Immense amounts of concrete research have shown that the incorporation of metal elements, such as Mo, Cu, Al, Cr, and W, is one of the good methods to decrease the internal stress of DLC films [7–12]. As one of the doped metal elements, W-incorporated DLC films (W-C:H) have been received considerable attention both in scientific research and industrial fields of carbon based materials [13–19]. The properties and structure of W-C:H films prepared by the process combining reactive magnetron sputtering with plasma source ion implantation were reported by Baba and coworkers [20]. Takeno et al. [21] investigated the electrical properties and structure of W-C:H films prepared by radio frequency plasma enhanced chemical vapor deposition, and a resistive superconducting transition was discovered in their report. Wang et al. [22] reported a rapid increase and a gradual decrease in the residual stress of DLC films prepared by end-Hall-type ion gun with increasing

References

[1]  J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, vol. 37, no. 4-6, pp. 129–281, 2002.
[2]  M. Lejeune, M. Benlahsen, and R. Bouzerar, “Stress and structural relaxation in amorphous hydrogenated carbon films,” Applied Physics Letters, vol. 84, no. 3, pp. 344–346, 2004.
[3]  E. Liu, L. Li, B. Blanpain, and J. P. Celis, “Residual stresses of diamond and diamondlike carbon films,” Journal of Applied Physics, vol. 98, no. 7, Article ID 073515, 2005.
[4]  T. Ma, Y.-Z. Hu, H. Wang, and X. Li, “Microstructural and stress properties of ultrathin diamondlike carbon films during growth: molecular dynamics simulations,” Physical Review B, vol. 75, no. 3, Article ID 035425, 2007.
[5]  O. A. Podsvirov, P. A. Karaseov, A. Y. Vinogradov et al., “Residual stress in diamond-like carbon films: role of growth conditions and ion irradiation,” Journal of Surface Investigation, vol. 4, no. 2, pp. 241–244, 2010.
[6]  K.-S. Kim, S.-H. Lee, Y.-C. Kim, S.-C. Lee, P.-R. Cha, and K.-R. Lee, “Structural analysis for the stress variation of ta-C film with deposition energy: a molecular dynamics simulation,” Metals and Materials International, vol. 14, no. 3, pp. 347–352, 2008.
[7]  L. Ji, H. Li, F. Zhao, J. Chen, and H. Zhou, “Microstructure and mechanical properties of Mo/DLC nanocomposite films,” Diamond and Related Materials, vol. 17, no. 11, pp. 1949–1954, 2008.
[8]  W. Dai and A. Wang, “Synthesis, characterization and properties of the DLC films with low Cr concentration doping by a hybrid linear ion beam system,” Surface and Coatings Technology, vol. 205, no. 8-9, pp. 2882–2886, 2011.
[9]  A.-Y. Wang, K.-R. Lee, J.-P. Ahn, and J. H. Han, “Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique,” Carbon, vol. 44, no. 9, pp. 1826–1832, 2006.
[10]  C.-C. Chen and F. C.-N. Hong, “Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles,” Applied Surface Science, vol. 242, no. 3-4, pp. 261–269, 2005.
[11]  W. Dai and A. Wang, “Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources,” Journal of Alloys and Compounds, vol. 509, no. 13, pp. 4626–4631, 2011.
[12]  J. E. Krzanowski and J. L. Endrino, “The effects of substrate bias on phase stability and properties of sputter-deposited tungsten carbide,” Materials Letters, vol. 58, no. 27-28, pp. 3437–3440, 2004.
[13]  W. J. Meng and B. A. Gillispie, “Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings,” Journal of Applied Physics, vol. 84, no. 8, pp. 4314–4321, 1998.
[14]  M. L. Terranova, V. Sessa, S. Piccirillo et al., “Temperature-dependent conduction of W-containing composite diamond films,” Applied Physics Letters, vol. 79, no. 13, pp. 2007–2009, 2001.
[15]  N. Yao, A. G. Evans, and C. V. Cooper, “Wear mechanism operating in W-DLC coatings in contact with machined steel surfaces,” Surface and Coatings Technology, vol. 179, no. 2-3, pp. 306–313, 2004.
[16]  J. Veverkova and S. V. Hainsworth, “Effect of temperature and counterface on the tribological performance of W-DLC on a steel substrate,” Wear, vol. 264, no. 7-8, pp. 518–525, 2008.
[17]  C. W. Moura e Silva, J. R. T. Branco, and A. Cavaleiro, “How can H content influence the tribological behaviour of W-containing DLC coatings,” Solid State Sciences, vol. 11, no. 10, pp. 1778–1782, 2009.
[18]  T. Takeno, T. Komiyama, H. Miki, T. Takagi, and T. Aoyama, “XPS and TEM study of W-DLC/DLC double-layered film,” Thin Solid Films, vol. 517, no. 17, pp. 5010–5013, 2009.
[19]  A. L. Mohd Tobi, J. Ding, S. Pearson, S. B. Leen, and P. H. Shipway, “The effect of gross sliding fretting wear on stress distributions in thin W-DLC coating systems,” Tribology International, vol. 43, no. 10, pp. 1917–1932, 2010.
[20]  K. Baba, R. Hatada, and Y. Tanaka, “Preparation and properties of W-containing diamond-like carbon films by magnetron plasma source ion implantation,” Surface and Coatings Technology, vol. 201, no. 19-20, pp. 8362–8365, 2007.
[21]  T. Takeno, H. Miki, T. Takagi, and H. Onodera, “Electrically conductive properties of tungsten-containing diamond-like carbon films,” Diamond and Related Materials, vol. 15, no. 11-12, pp. 1902–1905, 2006.
[22]  A.-Y. Wang, H.-S. Ahn, K.-R. Lee, and J.-P. Ahn, “Unusual stress behavior in W-incorporated hydrogenated amorphous carbon films,” Applied Physics Letters, vol. 86, no. 11, Article ID 111902, 2005.
[23]  S. Faruque Ahmed, K.-R. Lee, J.-I. Yoon, and M.-W. Moon, “Nanoporous structures of polyimide induced by Ar ion beam irradiation,” Applied Surface Science, vol. 258, no. 8, pp. 3841–3845, 2012.
[24]  X. Han, F. Yan, A. Zhang et al., “Structure and tribological behavior of amorphous carbon films implanted with Cr+ ions,” Materials Science and Engineering A, vol. 348, no. 1-2, pp. 319–326, 2003.
[25]  M.-W. Moon, S. H. Lee, J.-Y. Sun, K. H. Oh, A. Vaziri, and J. W. Hutchinson, “Wrinkled hard skins on polymers created by focused ion beam,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1130–1133, 2007.
[26]  ?. Me?kinis, R. Gudaitis, V. Kopustinskas, and S. Tamulevi?ius, “Electrical and piezoresistive properties of ion beam deposited DLC films,” Applied Surface Science, vol. 254, no. 16, pp. 5252–5256, 2008.
[27]  F. Schwarz, G. Thorwarth, and B. Stritzker, “Synthesis of silver and copper nanoparticle containing a-C:H by ion irradiation of polymers,” Solid State Sciences, vol. 11, no. 10, pp. 1819–1823, 2009.
[28]  R. Kometani, K. Yusa, S. Warisawa, and S. Ishihara, “Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition,” Journal of Vacuum Science & Technology B, vol. 28, no. 6, pp. F38–F41, 2010.
[29]  S. Nakao, T. Soga, T. Sonoda, T. Asada, and N. Kishi, “Optical and electrical properties of nitrogen-doped diamond-like carbon films prepared by a bipolar-type plasma-based ion implantation,” Japanese Journal of Applied Physics, vol. 51, no. 1, Article ID 01AC04, 2012.
[30]  V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, “Physics of closed drift thrusters,” Plasma Sources Science and Technology, vol. 8, no. 1, pp. R1–R20, 1999.
[31]  A. Anders, “Plasma and ion sources in large area coating: a review,” Surface and Coatings Technology, vol. 200, no. 5-6, pp. 1893–1906, 2005.
[32]  I. V. Bordenjuk, O. A. Panchenko, S. V. Sologub, and I. G. Brown, “Development of additional magnetron discharge in the drift region of an ion source with closed electron drift,” Problems of Atomic Science and Technology, no. 6, pp. 168–170, 2008.
[33]  D.-H. Park, J.-H. Kim, Y. Ermakov, and W.-K. Choi, “Linear ion source with closed drift and extended acceleration region,” Review of Scientific Instruments, vol. 79, no. 2, Article ID 02B312, 2008.
[34]  S. Lee, J.-K. Kim, and D.-G. Kim, “Effects of electrode geometry on the ion beam extraction of closed drift type anode layer linear ion source,” Review of Scientific Instruments, vol. 83, no. 2, Article ID 02B703, 2012.
[35]  W. Dai, H. Zheng, G. Wu, and A. Wang, “Effect of bias voltage on growth property of Cr-DLC film prepared by linear ion beam deposition technique,” Vacuum, vol. 85, no. 2, pp. 231–235, 2010.
[36]  H. Huang, G. H. Gilmer, and T. D. De La Rubia, “An atomistic simulator for thin film deposition in three dimensions,” Journal of Applied Physics, vol. 84, no. 7, pp. 3636–3649, 1998.
[37]  D. Bourgoin, S. Turgeon, and G. G. Ross, “Characterization of hydrogenated amorphous carbon films produced by plasma-enhanced chemical vapour deposition with various chemical hybridizations,” Thin Solid Films, vol. 357, no. 2, pp. 246–253, 1999.
[38]  P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, “Direct evaluation of the sp3 content in diamond-like-carbon films by XPS,” Applied Surface Science, vol. 136, no. 1-2, pp. 105–110, 1998.
[39]  Y. Taki and O. Takai, “XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating,” Thin Solid Films, vol. 316, no. 1-2, pp. 45–50, 1998.
[40]  J. Luthin and C. Linsmeier, “Carbon films and carbide formation on tungsten,” Surface Science, vol. 454, no. 1, pp. 78–82, 2000.
[41]  A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000.
[42]  A. C. Ferrari and J. Robertson, “Resonant raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Physical Review B, vol. 64, no. 7, Article ID 075414, 13 pages, 2001.
[43]  C. Casiraghi, A. C. Ferrari, and J. Robertson, “Raman spectroscopy of hydrogenated amorphous carbons,” Physical Review B, vol. 72, no. 8, Article ID 085401, 2005.
[44]  I. Gerhards, C. Ronning, H. Hofs?ss, M. Seibt, and H. Gibhardt, “Ion beam synthesis of diamond-like carbon thin films containing copper nanocrystals,” Journal of Applied Physics, vol. 93, no. 2, pp. 1203–1207, 2003.
[45]  J. L. Endrino, D. Horwat, R. Gago et al., “Electronic structure and conductivity of nanocomposite metal (Au, Ag, Cu, Mo)-containing amorphous carbon films,” Solid State Sciences, vol. 11, no. 10, pp. 1742–1746, 2009.
[46]  Y.-H. Chan, C.-F. Huang, K.-L. Ou, and P.-W. Peng, “Mechanical properties and antibacterial activity of copper doped diamond-like carbon films,” Surface and Coatings Technology, vol. 206, no. 6, pp. 1037–1040, 2011.
[47]  S. J. Park, K.-R. Lee, D.-H. Ko, and K. Y. Eun, “Microstructure and mechanical properties of WC-C nanocomposite films,” Diamond and Related Materials, vol. 11, no. 10, pp. 1747–1752, 2002.
[48]  V. Singh, J. C. Jiang, and E. I. Meletis, “Cr-diamondlike carbon nanocomposite films: synthesis, characterization and properties,” Thin Solid Films, vol. 489, no. 1-2, pp. 150–158, 2005.
[49]  T. Sonoda, S. Nakao, and M. Ikeyama, “Deposition of Ti/C nano-composite DLC films by magnetron DC sputtering with dual targets,” Vacuum, vol. 84, no. 5, pp. 666–668, 2009.
[50]  W. Dai, P. Ke, and A. Wang, “Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique,” Vacuum, vol. 85, no. 8, pp. 792–797, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133