We report the fabrication of a flexible network of multiwall carbon nanotubes (MWCNTs) known as buckypaper (BP) for thermoelectric (TE) applications. A thermal evaporation method was used to deposit TE metal alloys onto the BP. The TE properties were improved primarily by increasing the Seebeck coefficient values (50 and 75?μV/K) and the electrical conductivity by approximately 10?000?S/m. High-temperature resistivity studies were performed to confirm the semiconductivity of buckypaper. Variations in resistivity were observed to be the result of the metal alloys coated on the BP surface. We also demonstrated that a substantial increase in the Seebeck coefficient values can be obtained by connecting 3 and 5 layers of metal-deposited BP in series, thereby enhancing the TE efficiency of MWCNT-based BP for application in thermoelectric devices. 1. Introduction Recently, a considerable amount of effort has been devoted to developing thermoelectric (TE) devices that are capable of generating electricity from heat. TE devices that conserve heat energy should be cost-efficient and possess a high thermoelectric figure of merit [1]. Good TE materials must have a high Seebeck coefficient, which enhances thermoelectricity, low electrical resistivity, which minimizes Joule heating, and low thermal conductivity, which sustains a large temperature gradient [2]. The performance of a TE material is determined by its dimensionless figure of merit , where , , and are the Seebeck coefficient, electrical resistivity, and thermal conductivity of the materials, respectively. Previous studies have focused on semimetallic nanomaterials such as Bi, Sb, Te, and Bi-Sb alloys because of their promising thermoelectric properties [3–5]. Bi2Te3-based alloys are known to be a state-of-the-art material currently available for TE applications [6]. Recently, Zhang et al. [7] reported that the Seebeck coefficient of Bi2Te3 can be improved by incorporating single wall carbon nanotubes (SWCNTs) into the matrix. Furthermore, highly doped SWCNTs can be used to tune Bi2Te3 from - to -type. Despite their excellent thermoelectric properties, these materials exhibit poor mechanical property, which complicates the fabrication process, and can cause reliability problems in their application, especially in miniature TE modules. Recently, there has been considerable focus on macroscopic assemblies of various carbon nanotubes (CNTs) such as buckypaper (BP), fibers, pellets, and thin films because the characteristics of a single CNT can be used on a macroscopic scale to fabricate reliable,
References
[1]
W. Liu, X. Yan, G. Chen, and Z. Ren, “Recent advances in thermoelectric nanocomposites,” Nano Energy, vol. 1, no. 1, pp. 42–56, 2012.
[2]
M. S. Dresselhaus, G. Chen, M. Y. Tang et al., “New directions for low-dimensional thermoelectric materials,” Advanced Materials, vol. 19, no. 8, pp. 1043–1053, 2007.
[3]
A. L. Prieto, M. Martín-González, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, “The electrodeposition of high-density, ordered arrays of Bi1?xSbx nanowires,” Journal of the American Chemical Society, vol. 125, no. 9, pp. 2388–2389, 2003.
[4]
D. Mott, N. T. Mai, N. T. B. Thuy et al., “Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices,” Physica Status Solidi (A), vol. 208, no. 1, pp. 52–58, 2011.
[5]
H. J. Goldsmid, Semiconductors and Semimetals, vol. 69, chapter 1, Academic Press, New York, NY, USA, 2000.
[6]
W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, “High thermoelectric performance BiSbTe alloy with unique low-dimensional structure,” Journal of Applied Physics, vol. 105, no. 11, Article ID 113713, 2009.
[7]
Y. Zhang, X. L. Wang, W. K. Yeoh, R. K. Zeng, and C. Zhang, “Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3,” Applied Physics Letters, vol. 101, no. 3, Article ID 031909, 4 pages, 2012.
[8]
J. Liu, J. Sun, and L. Gao, “Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties,” Nanoscale, vol. 3, no. 9, pp. 3616–3619, 2011.
[9]
W. Zhao, S. Fan, N. Xiao et al., “Flexible carbon nanotube papers with improved thermoelectric properties,” Energy and Environmental Science, vol. 5, no. 1, pp. 5364–5369, 2012.
[10]
L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge, and R. Baughman, “Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials,” Journal of Applied Physics, vol. 95, no. 8, pp. 4335–4345, 2004.
[11]
T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes,” Nature, vol. 382, no. 6586, pp. 54–56, 1996.
[12]
I. Kunadian, R. Andrews, M. P. Mengü?, and D. Qian, “Thermoelectric power generation using doped MWCNTs,” Carbon, vol. 47, no. 3, pp. 589–601, 2009.
[13]
C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal conductance and thermopower of an individual single-wall carbon nanotube,” Nano Letters, vol. 5, no. 9, pp. 1842–1846, 2005.
[14]
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, no. 21, Article ID 215502, 4 pages, 2001.
[15]
C. Meng, C. Liu, and S. Fan, “A promising approach to enhanced thermoelectric properties using carbon nanotube networks,” Advanced Materials, vol. 22, no. 4, pp. 535–539, 2010.
[16]
M. T. Byrne and Y. K. Guin'Ko, “Recent advances in research on carbon nanotube—polymer composites,” Advanced Materials, vol. 22, no. 15, pp. 1672–1688, 2010.
[17]
G. D. Zhan, J. D. Kuntz, A. K. Mukherjee, P. Zhu, and K. Koumoto, “Thermoelectric properties of carbon nanotube/ceramic nanocomposites,” Scripta Materialia, vol. 54, no. 1, pp. 77–82, 2006.
[18]
Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites A, vol. 35, no. 10, pp. 1225–1232, 2004.
[19]
Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology, vol. 20, no. 32, Article ID 325302, 2009.
[20]
J. G. Park, J. Smithyman, C. Y. Lin et al., “Effects of surfactants and alignment on the physical properties of single-walled carbon nanotube buckypaper,” Journal of Applied Physics, vol. 106, no. 10, Article ID 104310, 6 pages, 2009.
[21]
A. B. Kaiser, G. Düsberg, and S. Roth, “Heterogeneous model for conduction in carbon nanotubes,” Physical Review B, vol. 57, no. 3, pp. 1418–1421, 1998.
[22]
J. C. Charlier, “Defects in carbon nanotubes,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1063–1069, 2002.
[23]
A. M. Díez-Pascual, J. Guan, B. Simard, and M. A. Gómez-Fatou, “Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II—mechanical properties, electrical and thermal conductivity,” Composites A, vol. 43, no. 6, pp. 1007–1015, 2012.
[24]
H. M. Kim, K. Kim, C. Y. Lee et al., “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Applied Physics Letters, vol. 84, no. 4, pp. 589–591, 2004.
[25]
A. Buldum and J. P. Lu, “Contact resistance between carbon nanotubes,” Physical Review B, vol. 63, no. 16, Article ID 161403(R), 4 pages, 2001.
[26]
C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, “Thermoelectric behavior of segregated-network polymer nanocomposites,” Nano Letters, vol. 8, no. 12, pp. 4428–4432, 2008.
[27]
J. Hone, I. Ellwood, M. Muno et al., “Thermoelectric power of single-walled carbon nanotubes,” Physical Review Letters, vol. 80, no. 5, pp. 1042–1045, 1998.
[28]
Y. J. Choi, Y. Kim, S. G. Park et al., “Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites,” Organic Electronics, vol. 12, no. 12, pp. 2120–2125, 2011.