The improvement of electrode materials used in microbial fuel cell (MFC) technology for enhancing the power performance of MFCs has attracted more and more attention lately. In this study, an new electrode material with a carbon nanotube planted on an Ni-based alloy substrate is applied to the MFC. Results show that a well-synthesized, straight CNT electrode performs the best, with a high open circuit voltage of 0.82?V and a maximum power density of 2.31?W/m2. It is believed that this new kind of electrode will have a promising future in the technology of power generation from MFCs. 1. Introduction The microbial fuel cell (MFC) is a rising form of power technology, as its use in the wastewater treatment process can become a method of capturing energy in the form of electricity or hydrogen gas, rather than being a drain on electrical energy [1]. However, a high internal resistance still exists in the MFC [2, 3], with a low power density appearing in MFCs that is needed to be overcome. Recent studies have shown that an MFC must be first able to reduce the loss in polarization effectively [4]. Microbial inoculums [5], chemical substrates [6], proton exchange materials [7], internal and external cell resistance [8], ionic solution strength [9], electrode materials [10], and operation conditions and configuration [1] have been continued to be studied. Among all these influencing factors in MFCs, the effect of electrode material on the power performance of MFCs is most significant [11]. This is because an inferior material feature of an electrode, mainly resulting from a difficult electron transfer between the bacteria and the electrode, will cause a low power output from MFCs [11]. Nowadays, carbon nanotubes (CNTs) have exhibited great potential as electrode materials in fuel cell applications due to their high surface-to-volume ratio and unique electrical and mechanical properties [12]. There has been little research done of MFCs in spite of the fact that the CNTs in the composite substrate can also facilitate the formation of biofilm in them, which is necessary for electron transfer via c-type cytochromes and nanowires [13]. In addition, several reports related to the CNT were also utilized to modify the anode electrode materials in MFCs [14–17]. The study by Sun et al., 2010, indicated that a multilayer modification would provide a free-standing three-dimensional network structure of interwoven nanotubes. This would enable a more specific surface area for anodic bacteria to anchor and decrease the interfacial charge transfer resistance from 1163 to 258?Ω.
References
[1]
B. E. Logan, Microbial Fuel Cells, John Wiley & sons, Inc, Hoboken, NJ, USA, 2008.
[2]
P. Liang, X. Huang, M.-Z. Fan, X.-X. Cao, and C. Wang, “Composition and distribution of internal resistance in three types of microbial fuel cells,” Applied Microbiology and Biotechnology, vol. 77, no. 3, pp. 551–558, 2007.
[3]
P. T. Ha, H. Moon, B. H. Kim, H. Y. Ng, and I. S. Chang, “Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage,” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1629–1634, 2010.
[4]
Y. M. Chen, C. T. Wang, Y. C. Yang, and W. J. Chen, “Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell,” International Journal of Hydrogen Energy, vol. 38, pp. 1131–1137, 2013.
[5]
C.-T. Wang, W.-J. Chen, and R.-Y. Huang, “Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli,” International Journal of Hydrogen Energy, vol. 35, no. 13, pp. 7217–7223, 2010.
[6]
D. Pant, G. Van Bogaert, L. Diels, and K. Vanbroekhoven, “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production,” Bioresource Technology, vol. 101, no. 6, pp. 1533–1543, 2010.
[7]
J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, “Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells,” Environmental Science and Technology, vol. 41, no. 3, pp. 1004–1009, 2007.
[8]
P. Aelterman, M. Versichele, M. Marzorati, N. Boon, and W. Verstraete, “Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes,” Bioresource Technology, vol. 99, no. 18, pp. 8895–8902, 2008.
[9]
H. Liu, S. Cheng, and B. E. Logan, “Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration,” Environmental Science and Technology, vol. 39, no. 14, pp. 5488–5493, 2005.
[10]
Y. Feng, X. Shi, X. Wang et al., “Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes,” Biosensors and Bioelectronics, vol. 35, no. 1, pp. 413–415, 2012.
[11]
M. Ghasemi, W. R. W. Daud, S. H. Hassan, et al., “Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review,” Journal of Alloys and Compounds, vol. 580, pp. 245–255, 2013.
[12]
H. M. Wang, Z. C. Wu, A. Plaseied et al., “Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells,” Journal of Power Sources, vol. 196, no. 18, pp. 7465–7469, 2011.
[13]
Y. Wang, B. Li, D. Cui, X. Xiang, and W. Li, “Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell,” Biosensors and Bioelectronics, vol. 51, pp. 349–355, 2014.
[14]
Y. Qiao, C. M. Li, S.-J. Bao, and Q.-L. Bao, “Carbon nanotube/polyaniline composite as anode material for microbial fuel cells,” Journal of Power Sources, vol. 170, no. 1, pp. 79–84, 2007.
[15]
H.-Y. Tsai, C.-C. Wu, C.-Y. Lee, and E. P. Shih, “Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes,” Journal of Power Sources, vol. 194, no. 1, pp. 199–205, 2009.
[16]
T. Sharma, A. L. Mohana Reddy, T. S. Chandra, and S. Ramaprabhu, “Development of carbon nanotubes and nanofluids based microbial fuel cell,” International Journal of Hydrogen Energy, vol. 33, no. 22, pp. 6749–6754, 2008.
[17]
X. Xie, M. Ye, L. Hu et al., “Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes,” Energy and Environmental Science, vol. 5, no. 1, pp. 5265–5270, 2012.
[18]
X. Xie, L. Hu, M. Pasta et al., “Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells,” Nano Letters, vol. 11, no. 1, pp. 291–296, 2011.
[19]
J. E. Mink and M. M. Hussain, “Sustainable design of high performance micro-sized microbial fuel cell with carbon nanotube anode and air cathode,” ACS Nano, vol. 7, pp. 6921–6927, 2013.
[20]
Z. Y. Juang, J. F. Lai, C. H. Weng et al., “On the kinetics of carbon nanotube growth by thermal CVD method,” Diamond and Related Materials, vol. 13, no. 11-12, pp. 2140–2146, 2004.
[21]
C. Du and N. Pan, “CVD growth of carbon nanotubes directly on nickel substrate,” Materials Letters, vol. 59, no. 13, pp. 1678–1682, 2005.
[22]
Y. S. Wu, F. G. Tseng, and C. H. Tsai, “Growth and characteristics of vertically-aligned carbon nanotubes by thermal CVD on various Si-based substrates for micro-DMFC,” in Proceedings of the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS '06), Berkeley, Calif, USA, 2006.
[23]
J. L. Liu, D. A. Lowy, R. G. Baumann, and L. M. Tender, “Influence of anode pretreatment on its microbial colonization,” Journal of Applied Microbiology, vol. 102, no. 1, pp. 177–183, 2007.
[24]
Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, and Z. Cao, “A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material,” International Journal of Hydrogen Energy, vol. 33, no. 18, pp. 4856–4862, 2008.
[25]
A. P. Borole, D. Aaron, C. Y. Hamilton, and C. Tsouris, “Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy,” Environmental Science and Technology, vol. 44, no. 7, pp. 2740–2745, 2010.
[26]
Y. Zhang, J. Sun, B. Hou, and Y. Hu, “Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode,” Journal of Power Sources, vol. 196, no. 18, pp. 7458–7464, 2011.
[27]
M. U. Khan, V. G. Gomes, and I. S. Altarawneh, “Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization,” Carbon, vol. 48, no. 10, pp. 2925–2933, 2010.
[28]
S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, “The biocompatibility of carbon nanotubes,” Carbon, vol. 44, no. 6, pp. 1034–1047, 2006.
[29]
H. Rismani-Yazdi, S. M. Carver, A. D. Christy, and O. H. Tuovinen, “Cathodic limitations in microbial fuel cells: an overview,” Journal of Power Sources, vol. 180, no. 2, pp. 683–694, 2008.