全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Porous Ti6Al4V Scaffold Directly Fabricated by Sintering: Preparation and In Vivo Experiment

DOI: 10.1155/2013/205076

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interface between the implant and host bone plays a key role in maintaining primary and long-term stability of the implants. Surface modification of implant can enhance bone ingrowth and increase bone formation to create firm osseointegration between the implant and host bone and reduce the risk of implant losing. This paper mainly focuses on the fabricating of 3-dimensiona interconnected porous titanium by sintering of Ti6Al4V powders, which could be processed to the surface of the implant shaft and was integrated with bone morphogenetic proteins (BMPs). The structure and mechanical property of porous Ti6Al4V was observed and tested. Implant shaft with surface of porous titanium was implanted into the femoral medullary cavity of dog after combining with BMPs. The results showed that the structure and elastic modulus of 3D interconnected porous titanium was similar to cancellous bone; porous titanium combined with BMP was found to have large amount of fibrous tissue with fibroblastic cells; bone formation was significantly greater in 6 weeks postoperatively than in 3 weeks after operation. Porous titanium fabricated by powders sintering and combined with BMPs could induce tissue formation and increase bone formation to create firm osseointegration between the implant and host bone. 1. Introduction The hip joint is a spherical joint between the femoral head and the acetabulum in the pelvis. It is a diarthrosis or synovial joint wrapped in a capsule that contains the synovial fluid (SF). The hip joint can transmit high dynamic loads and accommodate a wide range of movements because of the presence of the SF and the ball-in-socket geometry. Though its remarkable characteristics, the hip joint can be affected, more often in aged people, by chronic pain and diseases such as osteoarthritis, rheumatoid arthritis, bone tumors, or traumas. In these cases, the best clinical solution is the total hip replacement, a surgical procedure that replaces the unhealthy hip joint with an implant, preserving the synovial capsule [1–3]. Metallic materials are widely used for joint replacement and orthopedic and dental implants. Metals are more suitable for loading-bearing applications when compared with ceramics or polymeric materials because of their excellent mechanical property. Among various metallic biomaterials, titanium and its alloys are the most attractive metallic biomaterials for orthopedic and dental implants due to their excellent mechanical properties, biocompatibility, processability, and good corrosion resistance in recent years. However, a major problem

References

[1]  L. Mattei, F. Di Puccio, B. Piccigallo, and E. Ciulli, “Lubrication and wear modelling of artificial hip joints: a review,” Tribology International, vol. 44, no. 5, pp. 532–549, 2011.
[2]  X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012.
[3]  X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008.
[4]  R. M. Pilliar, “Porous-surfaced metallic implants for orthopedic applications,” Journal of Biomedical Materials Research, vol. 21, supplement 1, Article ID 355319, pp. 1–33, 1987.
[5]  X. Li, H. Gao, M. Uo et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 132–139, 2009.
[6]  H. Kienapfel, C. Sprey, A. Wilke, and P. Griss, “Implant fixation by bone ingrowth,” Journal of Arthroplasty, vol. 14, no. 3, pp. 355–368, 1999.
[7]  X. Li, H. Liu, X. Niu et al., “Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics,” Journal of Biomedical Materials Research B, vol. 97, no. 1, pp. 10–19, 2011.
[8]  X. M. Li, Y. Yang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Biocomposites reinforced by fibers or tubes, as scaffolds for tissue engineering or regenerative medicine,” Journal of Biomedical Materials Research Part A, 2013.
[9]  C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scripta Materialia, vol. 45, no. 10, pp. 1147–1153, 2001.
[10]  X. Li, C. Wang, W. Zhang, and Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process,” Materials Letters, vol. 63, no. 3-4, pp. 403–405, 2009.
[11]  X. M. Li, L. Wang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research A, vol. 101, no. 8, pp. 2424–2435, 2013.
[12]  M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 1, pp. 30–42, 2008.
[13]  A. Bansiddhi, T. D. Sargeant, S. I. Stupp, and D. C. Dunand, “Porous NiTi for bone implants: a review,” Acta Biomaterialia, vol. 4, no. 4, pp. 773–782, 2008.
[14]  X. Li, Y. Fan, and F. Watari, “Current investigations into carbon nanotubes for biomedical application,” Biomedical Materials, vol. 5, no. 2, Article ID 022001, 2010.
[15]  X. M. Li, Y. Huang, L. S. Zheng et al., “Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro,” Journal of Biomedical Materials Research A, 2013.
[16]  X. Li, X. Liu, J. Huang, Y. Fan, and F.-Z. Cui, “Biomedical investigation of CNT based coatings,” Surface and Coatings Technology, vol. 206, no. 4, pp. 759–766, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133