全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constructing Novel Fiber Reinforced Plastic (FRP) Composites through a Biomimetic Approach: Connecting Glass Fiber with Nanosized Boron Nitride by Polydopamine Coating

DOI: 10.1155/2013/470583

Full-Text   Cite this paper   Add to My Lib

Abstract:

A biomimetic method was developed to construct novel fiber reinforced plastic (FRP) composites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was coated on glass fiber (GF) surface. The polydopamine-treated GF (D-GF) adsorbed boron nitride (BN) nanoparticles, while obtaining micronano multiscale hybrid fillers BN-D-GF. Scanning electron microscopy (SEM) results showed that the strong interfacial interaction brought by the polydopamine benefits the loading amount as well as dispersion of the nano-BN on GF’s surface. The BN-D-GF was incorporated into epoxy resin to construct “FRP nanocomposites.” The morphology, dynamic mechanical and thermal characteristics of the FRP nanocomposites were analyzed. SEM morphology revealed that BN-D-GF heterogeneous dispersed in epoxy matrix. There was good adhesion between the polymer matrix and the BN-D-GF filler. The dynamic modulus and mechanical loss were studied using dynamic mechanical analysis (DMA). Compared with neat epoxy and untreated GF reinforced composites, BN-D-GF/epoxy and D-GF/epoxy systems showed improved mechanical properties. The thermal conductivity, Shore D hardness, and insulation properties were also enhanced. 1. Introduction Epoxy resins are a class of high performance thermosetting polymers for application in the automotive, construction, and aerospace industries. High specific stiffness, dimensional stability, lightweight, high corrosion resistance, and excellent insulating properties make them valuable in many electrical research areas, especially for insulated packing [1–3]. Recently, using epoxy resin as the matrix for fiber-reinforced plastic (FRP) composites has been increased significantly [4–6]. The FRP composites are considered as ideal candidates for academic research as well as industry applications because of their improved physical/chemical properties. Glass fiber (GF) is usually used for preparing large varieties of FRP composites [7]. The principal advantages of GF are low cost, high strength, and modulus. For FRP composites, the extent of adhesion of polymer matrix to the reinforcing fibers is very important. It is well known that stress passes from the fibers to the matrix through the interface. Therefore, the adhesive force affects the strength and rigidity of the reinforced plastics and their fracture behavior [8]. In order to enhance affinity between GF and polymer matrix, modification of the GF surface can be done by (a) coating fiber with a silane with reactive end groups [9], (b) coating fiber with a rubber emulsion [10], (c) coating fiber with a

References

[1]  L. T. Drazal, Advances in Polymer Science, vol. 75, Springer, Berlin, Germany, 1986.
[2]  H. D. Middleton, Composite Materials in Aircraft Structure, Longman, New York, NY, USA, 1990.
[3]  A. A. Baker, R. Jones, and R. J. Callinan, “Damage tolerance of graphite/epoxy composites,” Composite Structures, vol. 4, no. 1, pp. 15–44, 1985.
[4]  W. K. Goertzen and M. R. Kessler, “Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair,” Composites B, vol. 38, no. 1, pp. 1–9, 2007.
[5]  S. Sirivedin, D. N. Fenner, R. B. Nath, and C. Galiotis, “Effects of inter-fibre spacing and matrix cracks on stress amplification factors in carbon-fibre/epoxy matrix composites, Part II: hexagonal array of fibres,” Composites A, vol. 37, no. 11, pp. 1936–1943, 2006.
[6]  W. K. Goertzen and M. R. Kessler, “Creep behavior of carbon fiber/epoxy matrix composites,” Materials Science and Engineering A, vol. 421, no. 1-2, pp. 217–225, 2006.
[7]  N. Hameed, P. A. Sreekumar, B. Francis, W. Yang, and S. Thomas, “Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites,” Composites A, vol. 38, no. 12, pp. 2422–2432, 2007.
[8]  Y. T. Liao and K. C. Lee, “Effect of interface properties on the static and dynamic properties of unidirectional composites,” Journal of Applied Polymer Science, vol. 44, pp. 933–936, 1992.
[9]  K. Sever, M. Sarikanat, Y. Seki, and I. H. Tavman, “Concentration effect of γ-glycidoxypropyl-trimethoxysilane on the mechanical properties of glass fiber-epoxy composites,” Polymer Composites, vol. 30, no. 9, pp. 1251–1257, 2009.
[10]  M. R. Dadfar and F. Ghadami, “Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites,” Materials and Design, vol. 47, pp. 16–20, 2013.
[11]  F. Tarlochan, S. Ramesh, and S. Harpreet, “Advanced composite sandwich structure design for energy absorption applications: blast protection and crashworthiness,” Composites B, vol. 43, pp. 2198–2208, 2012.
[12]  M. M. Rahman, S. Zainuddin, M. V. Hosur et al., “Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of e-glass/epoxy composites,” Composite Structures, vol. 95, pp. 213–221, 2013.
[13]  F. Yavari, M. A. Rafiee, J. Rafiee, Z.-Z. Yu, and N. Koratkar, “Dramatic increase in fatigue life in hierarchical graphene composites,” ACS Applied Materials and Interfaces, vol. 2, no. 10, pp. 2738–2743, 2010.
[14]  N. Shahid, R. G. Villate, and A. R. Barron, “Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites,” Composites Science and Technology, vol. 65, no. 14, pp. 2250–2258, 2005.
[15]  G.-W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, “Enhanced thermal conductivity of polymer composites filled with hybrid filler,” Composites A, vol. 37, no. 5, pp. 727–734, 2006.
[16]  M. Ya-nan, L. Guozheng, G. Aijuan, Z. Feipeng, and Y. Li, “Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss,” Industrial and Engineering Chemistry Research, vol. 52, pp. 3342–3353, 2013.
[17]  H. B. Cho, M. Mitsuhashi, T. Nakayama et al., “Thermal anisotropy of epoxy resin-based nano-hybrid films containing BN nanosheets under a rotating superconducting magnetic field,” Materials Chemistry and Physics, vol. 139, pp. 355–359, 2013.
[18]  S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003.
[19]  I. Zaman, Q.-H. Le, H.-C. Kuan et al., “Interface-tuned epoxy/clay nanocomposites,” Polymer, vol. 52, no. 2, pp. 497–504, 2011.
[20]  T. Wan, S. Liao, K. Wang, P. Yan, and M. Clifford, “Multi-scale hybrid polyamide 6 composites reinforced with nano-scale clay and micro-scale short glass fibre,” Composites A, vol. 50, pp. 31–38, 2013.
[21]  M. J. Clifford and T. Wan, “Fibre reinforced nanocomposites: mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites,” Polymer, vol. 51, no. 2, pp. 535–539, 2010.
[22]  N. N. Herrera, J.-M. Letoffe, J.-L. Putaux, L. David, and E. Bourgeat-Lami, “Aqueous dispersions of silane-functionalized laponite clay platelets: a first step toward the elaboration of water-based polymer/clay nanocomposites,” Langmuir, vol. 20, no. 5, pp. 1564–1571, 2004.
[23]  K. A. Carrado, L. Xu, R. Csencsits, and J. V. Muntean, “Use of organo- and alkoxysilanes in the synthesis of grafted and pristine clays,” Chemistry of Materials, vol. 13, no. 10, pp. 3766–3773, 2001.
[24]  N. N. Herrera, J.-M. Letoffe, J.-P. Reymond, and E. Bourgeat-Lami, “Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes,” Journal of Materials Chemistry, vol. 15, no. 8, pp. 863–871, 2005.
[25]  H. Lee, B. P. Lee, and P. B. Messersmith, “A reversible wet/dry adhesive inspired by mussels and geckos,” Nature, vol. 448, no. 7151, pp. 338–341, 2007.
[26]  H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-inspired surface chemistry for multifunctional coatings,” Science, vol. 318, no. 5849, pp. 426–430, 2007.
[27]  P. V. Joseph, G. Mathew, K. Joseph, G. Groeninckx, and S. Thomas, “Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites,” Composites A, vol. 34, no. 3, pp. 275–290, 2003.
[28]  L. Yang, S. L. Phua, J. K. H. Teo et al., “A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin,” ACS Applied Materials and Interfaces, vol. 3, no. 8, pp. 3026–3032, 2011.
[29]  E. M. Woo and J. C. Seferis, “Viscoelastic characterization of high performance epoxy matrix composites,” Polymer Composites, vol. 12, pp. 273–280, 1991.
[30]  M. A. López-Manchado, J. Biagitti, and J. M. Kenny, “Comparative study of the effects of different fibers on the processing and properties of ternary composites based on PP-EPDM blends,” Polymer Composites, vol. 23, no. 5, pp. 779–789, 2002.
[31]  M. H. G. Wichmann, J. Sumfleth, F. H. Gojny, M. Quaresimin, B. Fiedler, and K. Schulte, “Glass-fibre-reinforced composites with enhanced mechanical and electrical properties: benefits and limitations of a nanoparticle modified matrix,” Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2346–2359, 2006.
[32]  S. Kume, I. Yamada, K. Watari, I. Harada, and K. Mitsuishi, “High-thermal-conductivity AlN filler for polymer/ceramics composites,” Journal of the American Ceramic Society, vol. 92, supplement 1, pp. S153–S156, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133