全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

DOI: 10.1155/2013/421503

Full-Text   Cite this paper   Add to My Lib

Abstract:

Single-walled carbon nanotubes (SWNTs) have been synthesized via a novel chemical vapor deposition (CVD) approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO) method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs. 1. Introduction Of vital importance to the next generation of aerospace vehicles are structurally resilient, lightweight, and space durable materials and structural health monitoring sensors that can withstand environmental rigors. Carbon nanotubes (CNTs) have shown significant potential in these and a wide variety of other applications on the basis of their remarkable mechanical and electronic properties [1, 2]. CNTs, however, can be produced by several synthesis methods, with some methods better suited for particular applications. Single-walled carbon nanotubes (SWNTs) grown between suspended pillars, for example, have been studied as potential nanoscale power lines [3]. A dominant approach for the synthesis of SWNTs is chemical vapor deposition (CVD), including the high-pressure carbon monoxide (HiPCO) technique [4]. In this paper, we present an alternative CVD method of synthesis of SWNTs for use in composites and aerospace sensor applications. Specifically, we describe the novel incorporation of iron catalysts within a mesoporous material for CNT production. Mesoporous materials (MPMs) are a class of inorganic molecular sieves [5]. Pores in the nanoscale range of 2 to 100?nm make these materials very attractive as shape selective adsorbents or catalysts. Generally, the MPM is prepared in solution by supramolecular assembly of organic molecules as templates with an inorganic precursor. In the original synthesis of MPMs is the formation of rod-like micelles using charged surfactants such as alkyltrimethylammonium surrounded by inorganic species followed by the polymerization of silicates to form the framework of MPMs. The pore size of MPMs can be tuned in the nanosize range based on the number of carbon atoms in the alkyl chain length of surfactants from about 1.6?nm for eight carbon atoms to 3.8?nm for 16 carbon atoms. The pores are separated by silicate walls whose thickness is in the range of 0.8 to 1.6?nm. As-synthesized MPMs have specific crystalline phases that can be controlled

References

[1]  M. Meyyappan, Carbon Nanotubes: Science and Applications, Boca Raton, Mass, USA, CRC Press, 2004.
[2]  C. Hierold, Carbon Nanotube Devices: Properties, Modeling, Integration and Applications, Wiley-VCH, Weinheim, Germany, 2008.
[3]  E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai, “Negative differential conductance and hot phonons in suspended nanotube molecular wires,” Physical Review Letters, vol. 95, no. 15, Article ID 155505, 2005.
[4]  P. Nikolaev, M. J. Bronikowski, R. K. Bradley et al., “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, vol. 313, no. 1-2, pp. 91–97, 1999.
[5]  P. T. Tanev and T. J. Pinnavaia, “Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties,” Chemistry of Materials, vol. 8, no. 8, pp. 2068–2079, 1996.
[6]  T. M. Abdel-Fattah, E. J. Siochi, and R. E. Crooks, “Pyrolytic synthesis of carbon nanotubes from sucrose on a mesoporous silicate,” Fullerenes Nanotubes and Carbon Nanostructures, vol. 14, no. 4, pp. 585–594, 2006.
[7]  P. T. Tanev and T. J. Pinnavaia, “A neutral templating route to Mesoporous molecular sieves,” Science, vol. 267, no. 5199, pp. 865–867, 1995.
[8]  T. M. Abdel-Fattah and T. J. Pinnavaia, “Tin-substituted mesoporous silica molecular sieve (Sn-HMS): synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization,” Chemical Communications, no. 5, pp. 665–666, 1996.
[9]  M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Letters, vol. 3, no. 2, pp. 269–273, 2003.
[10]  J. I. Paredes and M. Burghard, “Dispersions of individual single-walled carbon nanotubes of high length,” Langmuir, vol. 20, no. 12, pp. 5149–5152, 2004.
[11]  H. A. Pohl, Dielectrophoresis, the Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge, Mass, USA, 1978.
[12]  M. Dimaki and P. B?ggild, “Frequency dependence of the structure and electrical behaviour of carbon nanotube networks assembled by dielectrophoresis,” Nanotechnology, vol. 16, no. 6, pp. 759–763, 2005.
[13]  S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Weinheim, Germany, 2004.
[14]  H. Kuzmany, W. Plank, M. Hulman et al., “Determination of SWCNT diameters from the Raman response of the radial breathing mode,” European Physical Journal B, vol. 22, no. 3, pp. 307–320, 2001.
[15]  M. J. O'Connell, Carbon Nanotubes: Properties and Applications, Taylor and Francis, Boca Raton, Mass, USA, 2006.
[16]  H. Kataura, Y. Kumazawa, Y. Maniwa et al., “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, no. 1–3, pp. 2555–2558, 1999.
[17]  J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, “Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment,” Physical Review B, vol. 72, no. 20, Article ID 205438, 2005.
[18]  C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, and P. C. Eklund, “Debundling and dissolution of single-walled carbon nanotubes in amide solvents,” Journal of the American Chemical Society, vol. 126, no. 19, pp. 6095–6105, 2004.
[19]  M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, and D. E. Luzzi, “Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation,” Carbon, vol. 39, no. 8, pp. 1251–1272, 2001.
[20]  J. G. Wiltshire, A. N. Khlobystov, L. J. Li, S. G. Lyapin, G. A. D. Briggs, and R. J. Nicholas, “Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes,” Chemical Physics Letters, vol. 386, no. 4–6, pp. 239–243, 2004.
[21]  M. Dimaki and P. B?ggild, “Waferscale assembly of Field-Aligned nanotube Networks (FANs),” Physica Status Solidi A, vol. 203, no. 6, pp. 1088–1093, 2006.
[22]  A. H. Monica, S. J. Papadakis, R. Osiander, and M. Paranjape, “Wafer-level assembly of carbon nanotube networks using dielectrophoresis,” Nanotechnology, vol. 19, no. 8, Article ID 085303, 2008.
[23]  D. Sickert, S. Taeger, I. Kühne, M. Mertig, W. Pompe, and G. Eckstein, “Strain sensing with carbon nanotube devices,” Physica Status Solidi B, vol. 243, no. 13, pp. 3542–3545, 2006.
[24]  D. Xu, A. Subramanian, L. Dong, and B. J. Nelson, “Shaping nanoelectrodes for high-precision dielectrophoretic assembly of carbon nanotubes,” IEEE Transactions on Nanotechnology, vol. 8, no. 4, pp. 449–456, 2009.
[25]  J. Chung and J. Lee, “Nanoscale gap fabrication and integration of carbon nanotubes by micromachining,” Sensors and Actuators A, vol. 104, no. 3, pp. 229–235, 2003.
[26]  B. Wincheski, M. Namkung, J. Smits, P. Williams, and R. Harvey, “Effect of alignment on transport properties of carbon nanotube/metallic junctions,” in Proceedings of the Materials Research Society Symposium Proceedings, pp. 209–214, April 2003.
[27]  A. N. Watkins, J. L. Ingram, J. D. Jordan, R. A. Wincheski, J. M. Smits, and P. A. Williams, “Single wall carbon nanotube-based structural health sensing materials,” in Proceedings of the NSTI Nanotechnology Conference and Trade Show (NSTI Nanotech '04), vol. 3, pp. 149–152, March 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133