Verbascoside (VB) has attracted a great deal of attention due to ITS pharmacological properties. In our study, we synthesized a multifunctional verbascoside coated Ni nanoparticles (VB-Ni). Transmission electron microscopy (TEM) and high performance liquid chromatography (HPLC) display the characteristics of VB-Ni nanoparticles. Compared with VB, VB-Ni has been proven to induce apoptosis and resist the growth of doxorubicin-resistant K562 cells in vitro and in vivo. Thus, VB-Ni nanoparticles can be thought of as an ideal mode of cancer treatment. 1. Introduction Cancer is quickly becoming the leading cause of death worldwide [1]. Nickel nanoparticles (Ni NPs) have been applied in a wide range of fields due to their unique structure and properties [2–6]. Over the past decades, nanoparticles have been increasingly applied in clinical diagnoses and cancer therapy with promising and far-ranging prospects in the medical fields. Increasing interest in the application of nanotechnology for cancer therapy has been noted [7–10]. Previous phytochemical studies have demonstrated that flavonoids and phenylpropanoid glycosides are major bioactive constituents of the Tsoong herb (Chinese name: Banchunmaxianhao, BCM) [11]. Among these constituents, VB has attracted a great deal of attention due to its pharmacological properties [12–17]. Its properties include hepatoprotective, anti-inflammatory, antitumor, cytotoxic, and antioxidant activities [18–20]. In recent years, many studies on the therapeutic effect of drug-loaded nanoparticles have become a hot spot [21, 22]. Based on the above considerations, we have verified the biological effects of VB-Ni nanoparticles on treating cancer cells [23, 24]. These observations indicate their great potential in clinical and biomedical applications. 2. Materials and Methods 2.1. Materials BCM were collected from Gangcha, QingHai, China, and identified by Professor Li-Juan Mei (Northwest Institute of Plateau Biology, Chinese Academy of Sciences). Materials used for HPLC analysis were of analytical grade. 2.2. Cell Culture K562 cells were purchased from Tianjin Institute of Hematology and cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) supplemented with 10% FBS (GIBCO) and penicillin (100?U/mL)/streptomycin (100?mg/mL) at 37°C in a 5% CO2, water-saturated atmosphere. To test the function of VB-Ni, VB-Ni, or VB was added to K562 cells in the same concentration. Cells were observed by microscope after 48 or 72?h treatment, using DNA Ladder to detect the apoptosis of cells. 2.3. Extract VB from BCM Plant BCM (500?g) were
References
[1]
G. Zhang, X. Zeng, H. L. Yue, P. Li, and X. H. Zhao, “Evaluation of the antitumor activity by cdte qds with verbascoside,” Nano, vol. 08, no. 03, Article ID 1350031, 2013.
[2]
S. Yu, G. Wu, X. Gu et al., “Magnetic and pH-sensitive nanoparticles for antitumor drug delivery,” Colloids and Surfaces B, vol. 103, pp. 15–22, 2013.
[3]
M. Bououdina, S. Rashdan, J. L. Bobet, and Y. Ichiyanagi, “Nanomaterials for biomedical applications: synthesis, characterization, and applications,” Journal of Nanomaterials, vol. 2013, Article ID 962384, 4 pages, 2013.
[4]
S. Li, Z. Niu, X. Zhong et al., “Fabrication of magnetic Ni nanoparticles functionalized water-soluble graphene sheets nanocomposites as sorbent for aromatic compounds removal,” Journal of Hazardous Materials, vol. 229-230, pp. 42–47, 2012.
[5]
S. Larumbe, C. Gomez-Polo, J. I. Perez-Landazabal et al., “Ni doped Fe3O4 magnetic nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 3, pp. 2652–2660, 2012.
[6]
G. Zhang, X. Zeng, and P. Li, “Nanomaterials in cancer-therapy drug delivery system,” Journal of Biomedical Nanotechnology, vol. 9, no. 5, pp. 741–750, 2013.
[7]
D. Guo, C. Wu, X. Li, H. Jiang, X. Wang, and B. Chen, “In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 5, pp. 2301–2307, 2008.
[8]
J. Li, C. Wu, Y. Dai et al., “Doxorubicin-CdS nanoparticles: a potential anticancer agent for enhancing the drug uptake of cancer cells,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 2, pp. 435–439, 2007.
[9]
I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002.
[10]
Z. Q. Yu, R. M. Schmaltz, T. C. Bozeman et al., “Selective tumor cell targeting by the disaccharide moiety of bleomycin,” Journal of the American Chemical Society, vol. 135, no. 8, pp. 2883–2886, 2013.
[11]
Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–1292, 2001.
[12]
S. A. Schonbichler, L. K. Bittner, J. D. Pallua et al., “Simultaneous quantification of verbenalin and verbascoside in Verbena officinalis by ATR-IR and NIR spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, vol. 84, pp. 97–102, 2013.
[13]
L. Speranza, S. Franceschelli, M. Pesce et al., “Antiinflammatory effects in THP-1 cells treated with verbascoside,” Phytotherapy Research, vol. 24, no. 9, pp. 1398–1404, 2010.
[14]
L. Funes, O. Laporta, M. Cerdán-Calero, and V. Micol, “Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes,” Chemistry and Physics of Lipids, vol. 163, no. 2, pp. 190–199, 2010.
[15]
A. Santoro, G. Bianco, P. Picerno et al., “Verminoside- and verbascoside-induced genotoxicity on human lymphocytes: involvement of PARP-1 and p53 proteins,” Toxicology Letters, vol. 178, no. 2, pp. 71–76, 2008.
[16]
C. Zhao, G. Dodin, C. Yuan et al., “‘In vitro’ protection of DNA from Fenton reaction by plant polyphenol verbascoside,” Biochimica et Biophysica Acta, vol. 1723, no. 1–3, pp. 114–123, 2005.
[17]
Y. Shi, W. Wang, Y. Shi et al., “Fast repair of dAMP hydroxyl radical adduct by verbascoside via electron transfer,” Science in China C, vol. 42, no. 6, pp. 626–627, 1999.
[18]
C. Zhang, N. Awasthi, M. A. Schwarz, S. Hinz, and R. E. Schwarz, “Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer,” PLoS ONE, vol. 8, no. 2, Article ID e58037, 2013.
[19]
S. Xin, X. Li, Y. Zhu et al., “Nanofibrous mats coated by homocharged biopolymer-layered silicate nanoparticles and their antitumor activity,” Colloids and Surfaces B, vol. 105, pp. 137–143, 2013.
[20]
A. F. Ourique, S. Azoubel, C. V. Ferreira et al., “Lipid-core nanocapsules as a nanomedicine for parenteral administration of tretinoin: development and in vitro antitumor activity on human myeloid leukaemia cells,” Journal of biomedical nanotechnology, vol. 6, no. 3, pp. 214–223, 2010.
[21]
M. H. El-Dakdouki, E. Pure, and X. Huang, “Development of drug loaded nanoparticles for tumor targeting. Part 2: enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models,” Nanoscale, vol. 5, no. 9, pp. 3904–3911, 2013.
[22]
B. Auffinger, R. Morshed, A. Tobias, Y. Cheng, A. U. Ahmed, and M. S. Lesniak, “Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma?” Oncotarget, vol. 4, no. 3, pp. 378–396, 2013.
[23]
B. Behl, I. Papageorgiou, C. Brown et al., “Biological effects of cobalt-chromium nanoparticles and ions on dural fibroblasts and dural epithelial cells,” Biomaterials, vol. 34, no. 14, pp. 3547–3558, 2013.
[24]
D. Fourches, D. Pu, and A. Tropsha, “Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles,” Combinatorial Chemistry and High Throughput Screening, vol. 14, no. 3, pp. 217–225, 2011.
[25]
C. Andary, R. Wylde, C. Laffite, G. Privat, and F. Winternitz, “Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae,” Phytochemistry, vol. 21, no. 5, pp. 1123–1127, 1982.
[26]
L. Ji, Z. Yun, Z. Hong, S. Baoning, and Z. Rongliang, “Differentiation of human gastric adenocarcinoma cell line MGc80-3 induced by verbascoside,” Planta Medica, vol. 63, no. 6, pp. 499–502, 1997.
[27]
T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, vol. 289, no. 5485, pp. 1757–1760, 2000.