全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

DOI: 10.1155/2013/201017

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30?min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about ?132.02?μV/K and 6.05?μW/cm·K2, respectively. 1. Introduction Because the energy sources, such as petroleum, coal, and coal gas, will exhaust in the near future. Therefore, the problem of energy shortage and greenhouse effect become more and more serious, thus energy saving and reduction of the carbon emission become very important topics. Hence, the green technology is getting more and more attention. Thermoelectric (TE) effect is the simplest technology to convert the temperature difference to electrical energy. It generates electrical energy from the useless heat by thermoelectric effect. Thermoelectric materials can directly convert heat into electricity and vice versa. They have a lot of important applications, such as power generator [1] and cooler [2]. The performance of thermoelectric materials is decided by Seebeck coefficient, electrical conductivity, and thermal conductivity. The energy conversion efficiency of the thermoelectric materials is evaluated by the figure of merit , ( , Seebeck coefficient; , electrical conductivity; , absolute temperature; and , thermal conductivity) [3]. According to the formula, in order to obtain the excellent thermoelectric figure of merit, the materials must exhibit large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Among, the is defined as the power factor (PF). Currently, the bismuth telluride (Bi-Te) and antimony telluride- (Sb-Te-) based compounds are found to be the best thermoelectric materials within the room temperature region. Furthermore, Bi-Te- and Sb-Te-based thermoelectric

References

[1]  W. L. Luan and S. T. Tu, “Recent development of thermoelectric generation,” Chinese Science Bulletin, vol. 49, pp. 1–8, 2004.
[2]  K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 1982–1992, 2007.
[3]  D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press. Taylor & Francis Group, Boca Raton, Fla, USA, 2006.
[4]  H. J. Goldsmid, Electronic Refrigeration, Pion, London, UK, 1986.
[5]  L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 47, no. 19, pp. 12727–12731, 1993.
[6]  F. V?lklein, V. Baier, U. Dillner, and E. Kessler, “Transport properties of flash-evaporated (Bi1-xSbx)2Te3 films I: optimization of film properties,” Thin Solid Films, vol. 187, no. 2, pp. 253–262, 1990.
[7]  A. Dauscher, A. Thorny, and H. Scherrer, “Pulsed laser deposition of Bi2Te3 thin films,” Thin Solid Films, vol. 280, no. 1-2, pp. 61–66, 1996.
[8]  R. S. Makala, K. Jagannadham, and B. C. Sales, “Pulsed laser deposition of Bi2Te3-based thermoelectric thin films,” Journal of Applied Physics, vol. 94, no. 6, pp. 3907–3918, 2003.
[9]  H. Noro, K. Sato, and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering,” Journal of Applied Physics, vol. 73, no. 3, pp. 1252–1260, 1993.
[10]  J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryanand, and J. P. Fleurial, “Thermoelectric micro-device fabrication process and evaluation at the jet propulsion laboratory,” in Proceedings of the 21st International Conference on Thermoelectronics, pp. 535–539, 2002.
[11]  A. Boulouz, S. Chakraborty, A. Giani, F. Pascal Delannoy, A. Boyer, and J. Schumann, “Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices,” Journal of Applied Physics, vol. 89, no. 9, pp. 5009–5014, 2001.
[12]  A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD,” Materials Science and Engineering B, vol. 64, no. 1, pp. 19–24, 1999.
[13]  B. Gardes, J. Ameziane, G. Brun, J. C. Tedenac, and A. Boyer, “Epitaxial growth of thin films of V2VI3 semiconductors,” Journal of Materials Science, vol. 29, no. 10, pp. 2751–2753, 1994.
[14]  S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson, and J. R. Meyer, “Antisite defects of Bi2Te3 thin films,” Applied Physics Letters, vol. 75, no. 10, pp. 1401–1403, 1999.
[15]  Y. Kim, S. Cho, A. DiVenere, G. K. L. Wong, and J. B. Ketterson, “Composition-dependent layered structure and transport properties in BiTe thin films,” Physical Review B, vol. 63, no. 15, Article ID 155306, 5 pages, 2001.
[16]  J. M. Lin, Y. C. Chen, C. P. Lin, and C. Y. Wen, “Thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method,” in Proceedings of the 2nd International Conference on Innovation, Communication and Engineering, 2013.
[17]  D. M. Lee, C. H. Lim, B. C. Cho, Y. S. Lee, and C. H. Lee, “Effects of annealing on the thermoelectric and microstructural properties of deformed n-type Bi2Te3-based compounds,” Journal of Electronic Materials, vol. 35, no. 2, pp. 360–365, 2006.
[18]  S. H. Li, H. M. A. Soliman, J. Zhou et al., “Effects of annealing and doping on nanostructured bismuth telluride thick films,” Chemistry of Materials, vol. 20, no. 13, pp. 4403–4410, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133