全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhanced Visible Light Absorption by 3C-SiC Nanoparticles Embedded in Si Solar Cells by Plasma-Enhanced Chemical Vapor Deposition

DOI: 10.1155/2013/953790

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solar cells with 3C-SiC nanoparticles embedded in the Si were investigated by plasma-enhanced chemical vapor deposition. Several sizes of SiC nanoparticles were used as the intermediate layer for the solar cell. The Si thin films showed the formation of micro- and nanocrystallites on the SiC nanoparticle sites, which play an important role of heating block as a nanosubstrate. The Raman spectra revealed that the SiC nanoparticles were embedded in mixed phases of amorphous and nanocrystalline Si. Compared to the conventional solar cell sample, the photoreflectance was significantly reduced in the UV/visible spectral region due to the presence of the embedded 3C-SiC nanoparticles. The Si nanocrystals formed by the thin film deposition played an important role in reducing the photoreflectance within the visible to infrared spectral zones. Furthermore, the SiC nanoparticles contributed less in the photoabsorption at a longer infrared spectral zone wavelength of 1200?nm. 1. Introduction In recent years, several nanostructures, such as nanowires, quantum dots, photonic crystals, and ultra-small nanoparticles, have been widely investigated to improve the efficiency of Si solar cells [1–4]. These ultra-small nanoparticles used in Si solar cells enhance the light coupling in the ultraviolet (UV)/visible spectral range to increase the radiative recombination of photoexcited excitons and carrier transportation and produce a high voltage with improved power performance [5]. Si solar cells have very low UV spectral response due to low band gap energy ( ), which is a major limitation for collecting photogenerated carriers across Si to generate electrical energy from the UV spectra. To overcome such limitation, nanocrystals have been hybridized on Si solar cells to achieve a twofold enhancement in the cell efficiency under UV light, and wide band gap materials have been used [6]. Silicon carbide (SiC) is an indirect and wide band gap ( ) semiconductor with quite good electrical properties such as high electron mobility and saturation drift velocity. SiC is widely used in photonics and optoelectronics [7, 8]. SiC/TiO2 nanocomposites can be used as a photoelectrode that produces high power conversion efficiency in dye-sensitized solar cells [9]. SiC used as a window layer in a homojunction photodiode enhances the quantum efficiency with increased photo response in the shorter wavelength spectral region [10]. Furthermore, colloidal SiC nanocrystals absorb light in the UV/visible spectral range [11] and act as an antireflection coating on the Si solar cell [12]. Therefore,

References

[1]  M. L. Zhang, I. Mahmood, X. Fan, G. Xu, and N. B. Wong, “Large-area silicon nanowires from silicon monoxide for solar cell applications,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8271–8277, 2010.
[2]  A. Alguno, N. Usami, T. Ujihara et al., “Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure,” Applied Physics Letters, vol. 83, no. 6, pp. 1258–1260, 2003.
[3]  J. Choi, B. Parida, J. T. Lee, and K. Kim, “Nanopatterned silicon emitters of a solar cell fabricated by anodic aluminum oxide masks,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 7, pp. 6318–6322, 2011.
[4]  J. Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, “Inclusion of CdSe quantum dots on the P-doped emitter of Si solar cells,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 7, pp. 5619–5624, 2012.
[5]  M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, and M. H. Nayfeh, “Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle,” Applied Physics Letters, vol. 91, no. 6, Article ID 063107, 2007.
[6]  E. Mutlugun, I. M. Soganci, and H. V. Demir, “Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV,” Optics Express, vol. 16, no. 6, pp. 3537–3545, 2008.
[7]  S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Applied Physics Letters, vol. 99, no. 20, Article ID 201102, 2011.
[8]  Y. M. Liu and P. R. Prucnal, “Low-loss silicon carbide optical waveguides for silicon-based optoelectronic devices,” IEEE Photonics Technology Letters, vol. 5, no. 6, pp. 704–707, 1993.
[9]  Y. C. Lai and Y. C. Tsai, “An efficient 3C-silicon carbide/titania nanocomposite photoelectrode for dye-sensitized solar cell,” Chemical Communications, vol. 48, no. 53, pp. 6696–6698, 2012.
[10]  Y. Hirabayashi, S. Karasawa, K. Kobayashi, S. Misawa, and S. Yoshida, “Spectral response of a photodiode using 3C-SiC single crystalline film,” Sensors and Actuators A, vol. 43, no. 1–3, pp. 164–169, 1994.
[11]  Y. Li, C. Chen, J. T. Li, Y. Yang, and Z. M. Lin, “Surface charges and optical characteristic of colloidal cubic SiC nanocrystals,” Nanoscale Research Letters, vol. 6, no. 1, article 454, 2011.
[12]  N. I. Klyui, V. G. Litovchenko, V. P. Kostylyov et al., “Silicon solar cells with antireflecting and protective coatings based on diamond-like carbon and silicon carbide films,” Opto-Electronics Review, vol. 8, no. 4, pp. 406–409, 2000.
[13]  C. Lu, W. Huang, Y. Ni, and Z. Xu, “Hydrothermal synthesis and luminescence properties of octahedral LiYbF4: Er3+ microcrystals,” Materials Research Bulletin, vol. 46, no. 2, pp. 216–221, 2011.
[14]  K. Raghavachari and C. M. M. Rohlfing, “Bonding and stabilities of small silicon clusters: a theoretical study of Si7-Si10,” Journal of Chemical Physics, vol. 89, no. 4, pp. 2219–2234, 1988.
[15]  E. C. Honea, A. Ogura, D. R. Peale et al., “Structures and coalescence behavior of size-selected silicon nanoclusters studied by surface-plasmon-polariton enhanced Raman spectroscopy,” Journal of Chemical Physics, vol. 110, no. 24, pp. 12161–12172, 1999.
[16]  P. Hashemi, Y. Abdi, S. Mohajerzadeh et al., “Hydrogenation-assisted nanocrystallization of amorphous silicon by radio-frequency plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 100, no. 10, Article ID 104320, 2006.
[17]  K. Pangal, J. C. Sturm, S. Wagner, and T. H. Büyüklimanli, “Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films,” Journal of Applied Physics, vol. 85, no. 3, pp. 1900–1906, 1999.
[18]  A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, vol. 337, no. 1-2, pp. 1–6, 1999.
[19]  T. Y. Kim, C. Huh, N. M. Park, C. J. Choi, and M. Suemitsu, “In situ-grown hexagonal silicon nanocrystals in silicon carbide-based films,” Nanoscale Research Letters, vol. 7, article 634, 2012.
[20]  B. Parida, J. Choi, H. Y. Ji, S. Park, G. Lim, and K. Kim, “Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell,” Journal of Nanoscience and Nanotechnology, vol. 13, no. 9, pp. 6189–6195, 2013.
[21]  Powder Diffraction Data, “JCPDS# 29-1129, joint committee on powder diffraction standards,” Associateship at the National Bureau of Standards, Swarthmore, Pa, USA, 1976.
[22]  Powder Diffraction Data, “JCPDS#27-1402, joint committee on powder diffraction standards,” Associateship at the National Bureau of Standards, Swarthmore, Pa, USA, 1976.
[23]  Powder Diffraction Data, “JCPDS#41-1487, joint committee on powder diffraction standards,” Associateship at the National Bureau of Standards, Swarthmore, Pa, USA, 1976.
[24]  A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bulletin of Materials Science, vol. 27, no. 5, pp. 445–451, 2004.
[25]  L. G. Zhang, W. Y. Yang, H. Jin et al., “Ultraviolet photoluminescence from 3C-SiC nanorods,” Applied Physics Letters, vol. 89, no. 14, Article ID 143101, 2006.
[26]  V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn, and F. Huisken, “Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals,” Journal of Applied Physics, vol. 86, no. 4, pp. 1921–1924, 1999.
[27]  J. Jeong, G. S. Chung, and S. Nishino, “Raman scattering investigation of polycrystalline 3C-SiC film deposited on SiO2 by using APCVD with hexamethyldisilane,” Journal of the Korean Physical Society, vol. 52, no. 1, pp. 43–47, 2008.
[28]  U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surface Science, vol. 156, no. 2, pp. 678–700, 1985.
[29]  J. Y. Fan, X. L. Wu, H. X. Li, H. W. Liu, G. G. Siu, and P. K. Chu, “Luminescence from colloidal 3C-SiC nanocrystals in different solvents,” Applied Physics Letters, vol. 88, no. 4, Article ID 041909, 2006.
[30]  A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Surface control of optical properties in silicon nanoclusters,” Journal of Chemical Physics, vol. 117, no. 14, pp. 6721–6729, 2002.
[31]  V. ?vr?ek, A. Slaoui, and J. C. Muller, “Silicon nanocrystals as light converter for solar cells,” Thin Solid Films, vol. 451-452, pp. 384–388, 2004.
[32]  N. A. Hamizi and M. R. Johan, “Synthesis and size dependent optical studies in CdSe quantum dots via inverse micelle technique,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 395–398, 2010.
[33]  Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Applied Physics Letters, vol. 96, no. 7, Article ID 073111, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133