With recent advances in nanotechnology, carbon nanotubes (CNTs) have been extensively studied as substrates for cell culture, drug delivery systems, and medical implant materials. However, surprisingly little is known about the effect of CNTs on collective cellular processes (e.g., adhesion, proliferation, and differentiation). This leads to the need for quantitative characterization of the proliferation, differentiation, and mineralization of mesenchymal stem cells (MSCs) on multiwalled CNT-s (MWCNTs-) collagen scaffolds. In here, a set of MWCNTs-collagen scaffolds where three different types of MWCNTs are, respectively, entrapped in reconstituted type I collagen at four different concentrations less than 100 ppm are prepared; the MSC differentiation thereon is investigated by monitoring the transcription factor RunX2 (RunX), transforming growth factor β (TGF-β), alkaline phosphatase (AP), osteocalcin, and mineralized nodules of extracellular matrix (ECM). In short, the MWCNT-collagen scaffolds induced significant increases in AP activity and ECM mineralization due to the increased stiffness and strength of the scaffold by entrapping MWCNTs. This offers a potential for controlling MSC differentiation using MWCNT-collagen scaffolds. 1. Background There have been significant advances in cell-based therapy and tissue engineering for the repair and replacement of damaged tissues and organs. Now, scientific investigations in this area have been keeping observation upon nanotechnology that has great potential in creating next-generation approaches. More recently, researches have begun to focus on the role of nanostructures and nanomaterials for tissue engineering applications [1]. For example, CNTs introduced by Oberlin et al. in 1976 [2] have been regarded as promising substrates for cell-based therapy and tissue engineering (e.g., cell cultures, drug delivery systems, medical implantable materials, etc.) because of their unique material properties [3–9]. Although nanomaterial-based scaffolds (e.g., CNTs) are believed to provide many critical features of the microenvironments for cell adhesion, proliferation, and differentiation [1], much still remains uncertain and controversial about the effect of the nanomaterial-based scaffolds on the collective cellular processes. The recent advent of nanotechnology has stimulated an interest in creating a variety of new nanotechnology-based approaches for creating improved scaffolds with engineered tissues. The first pioneering research using composites of synthetic polymers and CNTs has demonstrated great promise
References
[1]
B. M. Baker, A. M. Handorf, L. C. Ionescu, W.-J. Li, and R. L. Mauck, “New directions in nanofibrous scaffolds for soft tissue engineering and regeneration,” Expert Review of Medical Devices, vol. 6, no. 5, pp. 515–532, 2009.
[2]
A. Oberlin, M. Endo, and T. Koyama, “Filamentous growth of carbon through benzene decomposition,” Journal of Crystal Growth, vol. 32, no. 3, pp. 335–349, 1976.
[3]
S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991.
[4]
D. A. Heller, S. Baik, T. E. Eurell, and M. S. Strano, “Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors,” Advanced Materials, vol. 17, no. 23, pp. 2793–2799, 2005.
[5]
L. Z. Gao, L. Nie, T. H. Wang et al., “Carbon nanotube delivery of the GFP gene into mammalian cells,” ChemBioChem, vol. 7, no. 2, pp. 239–242, 2006.
[6]
D. Cui, F. Tian, Y. Kong, I. Titushikin, and H. Gao, “Effects of single-walled carbon nanotubes on the polymerase chain reaction,” Nanotechnology, vol. 15, no. 1, pp. 154–157, 2004.
[7]
R. L. Price, M. C. Waid, K. M. Haberstroh, and T. J. Webster, “Selective bone cell adhesion on formulations containing carbon nanofibers,” Biomaterials, vol. 24, no. 11, pp. 1877–1887, 2003.
[8]
H. Hu, Y. Ni, V. Montana, R. C. Haddon, and V. Parpura, “Chemically functionalized carbon nanotubes as substrates for neuronal growth,” Nano Letters, vol. 4, no. 3, pp. 507–511, 2004.
[9]
E. Jan and N. A. Kotov, “Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite,” Nano Letters, vol. 7, no. 5, pp. 1123–1128, 2007.
[10]
P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, B. P. Arulanandam, D. W. Metzger, and R. Bizios, “Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation,” Journal of Biomedical Materials Research, vol. 59, no. 3, pp. 499–506, 2002.
[11]
T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, “Nanotechnological strategies for engineering complex tissues,” Nature Nanotechnology, vol. 6, no. 1, pp. 13–22, 2011.
[12]
P. M. Ajayan, J.-C. Charlier, and A. G. Rinzler, “Carbon nanotubes: from macromolecules to nanotechnology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 25, pp. 14199–14200, 1999.
[13]
R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann, “Collagen-carbon nanotube composite materials as scaffolds in tissue engineering,” Journal of Biomedical Materials Research A, vol. 74, no. 3, pp. 489–496, 2005.
[14]
J. Suhr, P. Victor, L. Ci et al., “Fatigue resistance of aligned carbon nanotube arrays under cyclic compression,” Nature Nanotechnology, vol. 2, no. 7, pp. 417–421, 2007.
[15]
S.-F. Wang, L. Shen, W.-D. Zhang, and Y.-J. Tong, “Preparation and mechanical properties of chitosan/carbon nanotubes composites,” Biomacromolecules, vol. 6, no. 6, pp. 3067–3072, 2005.
[16]
H. Gloeckner, T. Jonuleit, and H.-D. Lemke, “Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue,” Journal of Immunological Methods, vol. 252, no. 1-2, pp. 131–138, 2001.
[17]
D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nature Reviews Cancer, vol. 9, no. 2, pp. 108–122, 2009.
[18]
A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007.
[19]
A. Arthur, A. Zannettino, and S. Gronthos, “The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair,” Journal of Cellular Physiology, vol. 218, no. 2, pp. 237–245, 2009.
[20]
V. F. M. Segers, I. van Riet, L. J. Andries et al., “Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 290, no. 4, pp. H1370–H1377, 2006.
[21]
T. P. Lozito and R. S. Tuan, “Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs,” Journal of Cellular Physiology, vol. 226, no. 2, pp. 385–396, 2011.