The graphene double-walled carbon nanotube (DWCNT) hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better long-term stability, and stronger adhesive strength with conductive substrates. The optimized hybrid films with 20% weight ratio of graphene, which were fabricated by vacuum filtration, show the best electron emission performances with a low turn-on field of 0.50?V m?1 (at 1? Acm?2) and a high field enhancement factor of 27000. 1. Introduction Field emission relies on the electron extraction from the material surface by quantum mechanical tunneling [1]. This simple principle has been widely used in field emission displays (FED) [2], electron guns [3, 4], back-light devices [5], and so on. Due to their high aspect ratio, nanometer-sized tip radii, low work function, and high electrical conductivity, carbon nanotubes (CNTs) are considered one of the most promising materials for electron field emission [6–12]. However, the integration of CNT field emission into device remains a challenge which stems from the method of preparing field emission films and the contact between CNT films and the electrical substrates. Lots of methods for fabricating CNT field emission films are developed. CNT films prepared by the chemical vapor deposition (CVD) method [13–15] have high conductivity. But this method is very complex and expensive. Screen printing [16] is widely used to fabricate CNT field emission films, due to its low cost, easy control, and scalable preparation; however, the simple screen printing technique also brings some drawbacks, such as the poor adhesive strength to the substrate, residual organic binders, and high annealing temperature. The electrophoresis method [17] for fabricating CNT films owes some disadvantages, like the bad uniformity of films and the poor adhesive strength to the substrate. Vacuum filtration [18] is also widely used to prepare CNT films, owing to its low cost, being scalable, and low temperature preparation. Films prepared by vacuum filtration have the advantages of no organic binders and strange adhesive strength to the substrate. On the other hand, graphene a two-dimensional (2D) carbon material owns the highest electron mobility of
References
[1]
R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London A, vol. 119, pp. 173–181, 1928.
[2]
I. Brodie and P. R. Schwoebel, “Vacuum microelectronic devices,” Proceedings of the IEEE, vol. 82, no. 7, pp. 1006–1034, 1994.
[3]
N. De Jonge and J.-M. Bonard, “Carbon nanotube electron sources and applications,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1823, pp. 2239–2266, 2004.
[4]
H. J. Kim, J. M. Ha, S. H. Heo, and S. O. Cho, “Small-sized flat-tip CNT emitters for miniaturized X-ray tubes,” Journal of Nanomaterials, vol. 2012, Article ID 854602, 6 pages, 2012.
[5]
S. Lee, W. B. Im, J. H. Kang, and D. Y. Jeon, “Low temperature burnable carbon nanotube paste component for carbon nanotube field emitter backlight unit,” Journal of Vacuum Science and Technology B, vol. 23, no. 2, pp. 745–748, 2005.
[6]
S. Roh, J. Lee, M. Jang et al., “Characteristic features of stone-wales defects in single-walled carbon nanotube; Adsorption, dispersion, and field emission,” Journal of Nanomaterials, vol. 2010, Article ID 398621, 6 pages, 2010.
[7]
X. Li, S. Zuo, W. Liu, Y. He, Z. Xiao, and C. Zhu, “Field emission properties of the dendritic carbon nanotubes film embedded with ZnO quantum dots,” Journal of Nanomaterials, vol. 2011, Article ID 382068, 5 pages, 2011.
[8]
W. A. De Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179–1180, 1995.
[9]
J. Zhao, J. Zhang, Y. Su, Z. Yang, L. Wei, and Y. Zhang, “Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties,” Journal of Materials Science, vol. 47, pp. 6535–6541, 2012.
[10]
Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon, vol. 38, no. 2, pp. 169–182, 2000.
[11]
J. Yu and D. H. C. Chua, “Effective electron emitters by molybdenum oxide-coated carbon nanotubes core-shell nanostructures,” Journal of Materials Science, vol. 46, no. 14, pp. 4858–4863, 2011.
[12]
Y. Liu and S. Fan, “Enhancement of field emission properties of cyanoacrylate-carbon nanotube arrays by laser treatment,” Nanotechnology, vol. 15, no. 8, pp. 1033–1037, 2004.
[13]
B.-R. Huang, Y.-K. Yang, T.-C. Lin, and W.-L. Yang, “Core-shell structure of a silicon nanorod/carbon nanotube field emission cathode,” Journal of Nanomaterials, vol. 2012, Article ID 369763, 6 pages, 2012.
[14]
M. Mohammad, M. B. Khan, T. A. Sherazi, J. Anguita, and D. Adikaari, “Fabrication of vertically aligned CNT composite for membrane applications using chemical vapor deposition through In Situ polymerization,” Journal of Nanomaterials, vol. 2013, Article ID 713583, 5 pages, 2013.
[15]
G. F. Malgas, C. J. Arendse, N. P. Cele, and F. R. Cummings, “Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD,” Journal of Materials Science, vol. 43, no. 3, pp. 1020–1025, 2008.
[16]
T. Feng, L. Dai, J. Jiang et al., “Memory emission of printed carbon nanotube cathodes,” Applied Physics Letters, vol. 88, Article ID 203108, 2006.
[17]
L. Wang, Y. Chen, T. Chen, W. Que, and Z. Sun, “Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition,” Materials Letters, vol. 61, no. 4-5, pp. 1265–1269, 2007.
[18]
Z. Wu, Z. Chen, X. Du et al., “Transparent, conductive carbon nanotube films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004.
[19]
J. Zhang, X. Wang, W. Yang et al., “Interaction between carbon nanotubes and substrate and its implication on field emission mechanism,” Carbon, vol. 44, no. 3, pp. 418–422, 2006.
[20]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
[21]
W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, 2010.
[22]
I. Lahiri, V. P. Verma, and W. Choi, “An all-graphene based transparent and flexible field emission device,” Carbon, vol. 49, no. 5, pp. 1614–1619, 2011.
[23]
B. B. Wang, Q. J. Cheng, X. Chen, and K. Ostrikov, “Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment,” Journal of Alloys and Compounds, vol. 509, no. 38, pp. 9329–9334, 2011.
[24]
J. J. Wang, M. Y. Zhu, R. A. Outlaw et al., “Free-standing subnanometer qraphite sheets,” Applied Physics Letters, vol. 85, no. 7, pp. 1265–1267, 2004.
[25]
A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova et al., “Raman scattering characterization of CVD graphite films,” Carbon, vol. 46, no. 6, pp. 963–968, 2008.
[26]
S. Sethi and A. Dhinojwala, “Superhydrophobic conductive carbon nanotube coatings for steel,” Langmuir, vol. 25, no. 8, pp. 4311–4313, 2009.
[27]
R. G. Forbes, “Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier,” Applied Physics Letters, vol. 89, Article ID 113122, 2006.
[28]
N. De Jonge, M. Allioux, M. Doytcheva et al., “Characterization of the field emission properties of individual thin carbon nanotubes,” Applied Physics Letters, vol. 85, no. 9, pp. 1607–1609, 2004.
[29]
J. Xu, R. Pan, Y. Chen et al., “Electron field emission from screen-printed graphene/DWCNT composite films,” Journal of Alloys and Compounds, vol. 551, pp. 348–351, 2012.
[30]
R. Czerw, B. Foley, D. Tekleab, A. Rubio, P. M. Ajayan, and D. L. Carroll, “Substrate-interface interactions between carbon nanotubes and the supporting substrate,” Physical Review B, vol. 66, no. 3, Article ID 033408, 2002.
[31]
Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity,” Environmental Science and Technology, vol. 42, no. 13, pp. 4952–4957, 2008.
[32]
M. Chelvayohan and C. H. B. Mee, “Work function measurements on (110), (100) and (111) surfaces of silver,” Journal of Physics C, vol. 15, no. 10, article 029, pp. 2305–2312, 1982.