Polystyrene-block-polyvinylpyridine (PS-b-P4VP) polypseudorotaxanes with cucurbit[7]urils (CB[7]) were prepared from water soluble PS-b-P4VPH+ polymer and CB[7] in aqueous solution at room temperature. At acidic and neutral pH, the pyridinium block of PS-b-P4VP is protonated (PS-b-P4VPH+) pushing CB[7] to preferably host the P4VP block. At basic pH (pH 8), P4VP is not charged and thus is not able to strongly complex CB[7]. This phenomenon was verified further by monitoring the release of pyrene, a hydrophobic cargo model, from a PS-b-P4VPH+/CB[7] micellar membrane. Release study of UV active pyrene from the membrane at different pH values revealed that the system is only operational under basic conditions and that the host-guest interaction of CB[7] with P4VPH+ significantly slows down cargo release. 1. Introduction Self-assembly of polystyrene-block-poly(4-vinylpyridine) PS-b-P4VP amphiphilic block copolymer has been studied extensively with different metals (because a variety of metal salts can be selectively coordinated to the PVP block) and at different temperatures and pH values [1–8]. PS-b-P4VP is a well-known block copolymer that is commercially available and can be easily synthesized by sequential anionic polymerization of styrene followed by 4-vinylpyridine (4VP) in tetrahydrofuran (THF) at ?78°C under nitrogen [9]. Multiple changes in aggregate morphology (spheres, rods, lamellae, and mixture of aggregates) of this block copolymer have been described as a function of pH [7]. The reason for this behavior or morphological complexity can be ascribed to the amphiprotic nature of P4VP where the addition of acid or base introduces ionic groups into the corona chains. Polymer micellar morphologies are useful in the field of controlled drug release, and so we reported the morphological changes and Dox release from PS-b-P4VP micellar membrane at different pH values [8]. Cucurbit[n]urils (CB[n], of glycoluril units) are a class of barrel-shaped macrocyclic hosts with symmetric carbonyl-lined portals [10–16]. They are capable of forming inclusion complexes with appropriately sized guest compounds in water with high affinity ( ?M?1) [17]. Cucurbit[7]uril (CB[7]) has been shown to form a variety of strong, stable complexes with pyridinium cation type compounds. Polymers with such aromatic moieties promote the creation of a wide range of macromolecular architectures in water, which are held together by host-guest interaction with CB[7]. Pseudorotaxanes, a class of supramolecular species in which a molecular thread is encircled by a molecular bead, have been
References
[1]
R. P. Zhu, Y. M. Wang, and W. D. He, “Multiple morphological micelles formed from the self-assembly of poly(styrene)-b-poly(4-vinylpyridine) containing cobalt dodecyl benzene sulfonate,” European Polymer Journal, vol. 41, pp. 2088–2096, 2005.
[2]
J. T. Zhu, H. Z. Yu, and W. Jiang, “Morphological transition of aggregates from ABA amphiphilic triblock copolymer induced by hydrogen bonding,” Macromolecules, vol. 38, no. 17, pp. 7492–7501, 2005.
[3]
J. Ruokolainen, G. ten Brinke, and O. Ikkala, “Supramolecular polymeric materials with hierarchical structure-within-structure morphologies,” Advanced Materials, vol. 11, pp. 777–780, 1999.
[4]
O. Ikkala and G. Ten Brinke, “Functional materials based on self-assembly of polymeric supramolecules,” Science, vol. 295, no. 5564, pp. 2407–2409, 2002.
[5]
O. Ikkala and G. Ten Brinke, “Hierarchical self-assembly in polymeric complexes: towards functional materials,” Chemical Communications, vol. 19, pp. 2131–2137, 2004.
[6]
Z. Gao, S. K. Varshney, S. Wong, and A. Eisenberg, “Block copolymer “crew-cut” micelles in water,” Macromolecules, vol. 27, no. 26, pp. 7923–7927, 1994.
[7]
H. Shen, L. Zhang, and A. Eisenberg, “Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine) in DMF/H2O mixtures,” Journal of the American Chemical Society, vol. 121, pp. 2728–2740, 1999.
[8]
X. Yang, B. A. Moosa, L. Deng, L. Zhao, and N. M. Khashab, “PH-triggered micellar membrane for controlled release microchips,” Polymer Chemistry, vol. 2, no. 11, pp. 2543–2547, 2011.
[9]
J. Zhu, A. Eisenberg, and R. B. Lennox, “Interfacial behavior of block polyelectrolytes. 1. Evidence for novel surface micelle formation,” Journal of the American Chemical Society, vol. 113, no. 15, pp. 5583–5588, 1991.
[10]
H.-K. Lee, K. M. Park, Y. J. Jeon et al., “Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin,” Journal of the American Chemical Society, vol. 127, no. 14, pp. 5006–5007, 2005.
[11]
J. Kim, I.-S. Jung, S.-Y. Kim et al., “New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8),” Journal of the American Chemical Society, vol. 122, no. 3, pp. 540–541, 2000.
[12]
A. I. Day, A. P. Arnold, R. J. Blanch, and B. Snushall, “Controlling factors in the synthesis of cucurbituril and its homologues,” Journal of Organic Chemistry, vol. 66, no. 24, pp. 8094–8100, 2001.
[13]
G. Celtek, M. Artar, O. A. Scherman, and D. Tuncel, “Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane,” Chemistry, vol. 15, no. 40, pp. 10360–10363, 2009.
[14]
F. W. L. V?gtle, Mock in Comprehensive Supramolecular Chemistry, vol. 2, Pergamon Press, Oxford, UK, 1996.
[15]
K. Kim, “Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies,” Chemical Society Reviews, vol. 31, pp. 96–107, 2002.
[16]
J. Lagona, P. Mukhopadhyay, S. Chakrabarti, and L. Isaacs, “The cucurbit[n]uril family,” Angewandte Chemie (International Edition), vol. 44, no. 31, pp. 4844–4870, 2005.
[17]
S. Y. Jon, N. Selvapalam, D. H. Oh et al., “Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril,” Journal of the American Chemical Society, vol. 125, no. 34, pp. 10186–10187, 2003.
[18]
M. Sempere, G. Fernandez, and F. Wurthner, “Self-sorting phenomena in complex supramolecular systems,” Chemical Reviews, vol. 111, pp. 5784–5814, 2011.
[19]
B. Rosen, C. Wilson, D. Wilson, M. Peterca, M. Imam, and V. Percec, “Dendron-mediated self-assembly, disassembly, and self-organization of complex systems,” Chemical Reviews, vol. 109, pp. 6275–6540, 2009.
[20]
A. Harada, A. Hashidzume, H. Yamaguchi, and Y. Takashima, “Polymeric rotaxanes,” Chemical Reviews, vol. 109, pp. 5974–6023, 2009.
[21]
N. Mom?ilovi?, P. Clark, A. Boydston, and R. Grubbs, “One-pot synthesis of polyrotaxanes via acyclic diene metathesis polymerization of supramolecular monomers,” Journal of the American Chemical Society, vol. 133, pp. 19087–19089, 2011.
[22]
S. I. Yoo, B.-H. Sohn, W.-C. Zin, J. C. Jung, and C. Park, “Mixtures of diblock copolymer micelles by different mixing protocols,” Macromolecules, vol. 40, no. 23, pp. 8323–8328, 2007.
[23]
M. Jacquin, P. Muller, H. Cottet, and O. Théodoly, “Self-assembly of charged amphiphilic diblock copolymers with insoluble blocks of decreasing hydrophobicity: from kinetically frozen colloids to macrosurfactants,” Langmuir, vol. 26, no. 24, pp. 18681–18693, 2010.
[24]
B. P. Bastakoti, S. Guragain, Y. Yokoyama, S.-I. Yusa, and K. Nakashima, “Incorporation and release behavior of amitriptylene in core-shell-corona type triblock copolymer micelles,” Colloids and Surfaces B, vol. 88, no. 2, pp. 734–740, 2011.
[25]
G. Chen and M. Jiang, “Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly,” Chemical Society Reviews, vol. 40, pp. 2254–2266, 2011.
[26]
Y. Ling and A. E. Kaifer, “Complexation of poly(phenylenevinylene) precursors and monomers by cucurbituril hosts,” Chemistry of Materials, vol. 18, no. 25, pp. 5944–5949, 2006.
[27]
Z. Keresztessy, M. Bodnár, E. Ber et al., “Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery,” Colloid and Polymer Science, vol. 287, no. 7, pp. 759–765, 2009.
[28]
H. Ishiguro, M. C. Steward, R. W. Wilson, and R. M. Case, “Bicarbonate secretion in interlobular ducts from guinea-pig pancreas,” Journal of Physiology, vol. 495, no. 1, pp. 179–191, 1996.
[29]
D. Tuveson and D. Hanahan, “Translational medicine: cancer lessons from mice to humans,” Nature, vol. 471, no. 7338, pp. 316–317, 2011.