全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Various Surfactants on Size, Morphology, and Optical Properties of CeO2 Nanostructures via Facile Hydrothermal Route

DOI: 10.1155/2013/839391

Full-Text   Cite this paper   Add to My Lib

Abstract:

Different surfactants such as sodium dodecyl sulfate (SDS), polyethylene glycol (PEG), and cetyltrimethyl ammonium bromide (CTAB,) assisted cerium oxide (CeO2) nanoparticles were synthesized by using cerium chloride and potassium hydroxide as the starting materials via facile hydrothermal route. The powder X-ray diffraction (XRD) shows that cubic fluorite-type structure of pure CeO2 and the average crystallite sizes were calculated to be ~12–16?nm. Raman spectra of various surfactants assisted CeO2 consist of a single triply degenerated F2g mode characteristic of the fluorite structure. The elongated spherical-like morphology of SDS assisted CeO2 samples was observed from the SEM and TEM studies. Optical absorption spectra showed a blue shift by the capped CeO2 due to the quantum confinement effect. Photoluminescence (PL) emission studies shows that there is a change in the intensity of emission peaks by the capping agents, which indicates that the capping layers did result in size changes or increased surface defect. 1. Introduction Synthesis of nanomaterials with controlled morphology, size, chemical composition, and crystal structure, and in large quantity, is a key step toward nanotechnological applications [1]. Nanocrystalline cerium oxide (CeO2) materials have received much attention owing to their physical and chemical properties, which are markedly different from those of the bulk materials [2]. Ceria is an important rare-earth oxide with rapidly increasing applications in several fields due to its high refractive nature, strong UV absorption property [3], and high transparency in the visible and IR region [4]. Due to these properties, it has been widely used for a variety of applications such as fuel cells, gas sensors, NO removal, glass polishing material, and UV-blockers and filters [3–7]. It is well known that the new properties and applications of materials are related to their shapes and sizes [8]. Moreover, the morphology of the product can be controlled, through proper choice of the surfactants. A variety of methods, including spray pyrolysis, microwave-hydrothermal, sol-gel, and hydrothermal and chemical precipitation route, have been successfully used to create ceria nanoparticles [7–12]. Among the other methods, the hydrothermal approach is a better alternative with the advantages of the simplicity of the process, high purity, easy scaleup, narrow particle size distribution, chemical homogeneity, and low environmental pollution. Cationic, anionic, and nonionic surfactants can play an important role in synthesizing the nanomaterial in

References

[1]  S. H. Ng, D. I. dos Santos, S. Y. Chew et al., “Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage,” Electrochemistry Communications, vol. 9, no. 5, pp. 915–919, 2007.
[2]  K. Nakagawa, Y. Murata, M. Kishida, M. Adachi, M. Hiro, and K. Susa, “Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2-TiO2 composite nanostructures,” Materials Chemistry and Physics, vol. 104, no. 1, pp. 30–39, 2007.
[3]  E. K. Goharshadi, S. Samiee, and P. Nancarrow, “Fabrication of cerium oxide nanoparticles: characterization and optical properties,” Journal of Colloid and Interface Science, vol. 356, no. 2, pp. 473–480, 2011.
[4]  D. Barreca, G. Bruno, A. Gasparotto, M. Losurdo, and E. Tondello, “Nanostructure and optical properties of CeO2 thin films obtained by plasma-enhanced chemical vapor deposition,” Materials Science and Engineering C, vol. 23, pp. 1013–1016, 2003.
[5]  F. H. Garzon, R. Mukundan, and E. L. Brosha, “Solid-state mixed potential gas sensors: theory, experiments and challenges,” Solid State Ionics, vol. 136, pp. 633–638, 2000.
[6]  R. Di Monte, P. Fornasiero, M. Graziani, and J. Ka?par, “Oxygen storage and catalytic NO removal promoted by CeO2-containing mixed oxides,” Journal of Alloys and Compounds, vol. 275, pp. 877–885, 1998.
[7]  B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, and A. Kachouane, “Structural and optical properties of CeO2 thin films prepared by spray pyrolysis,” Thin Solid Films, vol. 379, no. 1-2, pp. 23–27, 2000.
[8]  C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, and E. Longo, “Preparation of CeO2 by a simple microwave-hydrothermal method,” Solid State Ionics, vol. 180, no. 2-3, pp. 288–291, 2009.
[9]  M. L. Dos Santos, R. C. Lima, C. S. Riccardi et al., “Preparation and characterization of ceria nanospheres by microwave-hydrothermal method,” Materials Letters, vol. 62, no. 30, pp. 4509–4511, 2008.
[10]  J. X. Zhu, D. F. Zhou, S. R. Guo et al., “Grain boundary conductivity of high purity neodymium-doped ceria nanosystem with and without the doping of molybdenum oxide,” Journal of Power Sources, vol. 174, no. 1, pp. 114–123, 2007.
[11]  G. Shen, Q. Wang, Z. Wang, and Y. Chen, “Hydrothermal synthesis of CeO2 nano-octahedrons,” Materials Letters, vol. 65, no. 8, pp. 1211–1214, 2011.
[12]  J. Jasmine Ketzial and A. Samson Nesaraj, “Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a surfactant on the distribution of particle sizes,” Journal of Ceramic Processing Research, vol. 12, no. 1, pp. 74–79, 2011.
[13]  I. Singh, G. Kaur, and R. K. Bedi, “CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique,” Journal of Alloys and Compounds, vol. 466, pp. 26–30, 2008.
[14]  ?. Tunuso?lu, “Surfactant-assisted formation of organophilic CeO2 nanoparticles,” Colloids and Surfaces A, vol. 395, pp. 10–17, 2012.
[15]  L. Mei, S. Zhenxue, L. Zhaogang, H. Yanhong, W. Mitang, and L. Hangquan, “Effect of surface modification on behaviors of cerium oxide nanopowders,” Journal of Rare Earths, vol. 25, no. 3, pp. 368–372, 2007.
[16]  C. Ho, J. C. Yu, T. Kwong, A. C. Mak, and S. Lai, “Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures,” Chemistry of Materials, vol. 17, no. 17, pp. 4514–4522, 2005.
[17]  J. R. McBride, K. C. Hass, and W. H. Weber, “Raman and X-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd, and Tb,” Journal of Applied Physics, vol. 76, no. 4, pp. 2435–2441, 1994.
[18]  Y. P. Fu, C. H. Lin, and C. S. Hsu, “Preparation of ultrafine CeO2 powders by microwave-induced combustion and precipitation,” Journal of Alloys and Compounds, vol. 391, no. 1-2, pp. 110–114, 2005.
[19]  S. Samiee and E. K. Goharshadi, “Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method,” Materials Research Bulletin, vol. 47, no. 4, pp. 1089–1095, 2012.
[20]  L. Wang, J. Ren, X. Liu, G. Lu, and Y. Wang, “Evolution of SnO2 nanoparticles into 3D nanoflowers through crystal growth in aqueous solution and its optical properties,” Materials Chemistry and Physics, vol. 127, no. 1-2, pp. 114–119, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133