全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tuning the Pore Size in Ionic Nanoparticle Networks

DOI: 10.1155/2013/682945

Full-Text   Cite this paper   Add to My Lib

Abstract:

Highly promising hybrid materials consisting of silica, titania, or zirconia nanoparticles linked with ionic liquid-like imidazolium units have been developed. The nanoparticle networks are prepared by click-chemistry-like process through a nucleophilic substitution reaction. The type of metal oxide nanoparticles appears to play a key role regarding the pore size of the hybrid material. 1. Introduction Recently the materials community is focusing on the development of specific materials based on assemblies of nanoparticles. These new materials aim at making use of nanoparticle collective properties. In this context, various synthetic pathways were proposed, such as template-assisted synthesis [1, 2], layer-by-layer deposition [3], or using covalent organic mediator [4–8]. These nanoparticle assemblies are already highly promising for numerous applications, like plasmonics, catalysis, or gas sorption/gas sequestration applications. For catalysis and gas sorption/sequestration applications, the porosity of these materials is an important aspect [9, 10]. Wacker et al. developed a purely inorganic porous nanoparticle assembly, by the bridging of magnetite nanoparticle with silica colloids, for catalytic applications [11], while Gao and coworkers prepared porous magnetite nanochain assemblies for water treatment [12]. However, for such applications like catalysis and gas separation, the use of hybrid inorganic-organic porous materials can be even more interesting, as the organic counterpart is able to interact with gas molecules or precursors. Thus, it was shown that the presence of ionic linker can enhance the adsorbent-adsorbate interactions through charge-induced forces [13]. In particular, ionic liquid-like linkers were pointed out to be extremely interesting [14–18]. More specifically, the high affinity of carbon dioxide for imidazolium moieties was evidenced [8, 19, 20]. For example, Lee et al. have reported the effective absorbtion of carbon dioxide over methane by copper imidazolium microporous frameworks [21]. This separation is enabled by the effects of both the metal site and the ionic imidazolium species. In this context, we have already reported the synthesis of titania Ionic Nanoparticle Networks (INNs), where the titania nanoparticles are covalently linked by means of imidazolium bridges [22]. The titania INNs have shown to possess pores with a diameter centred on 2?nm. The present communication describes a new INN material based on zirconia nanoparticles and compares the porous characteristics of different INNs, with various metal oxide

References

[1]  Gacoin, Besson, and Boilot, “Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks,” Journal of Physics Condensed Matter, vol. 18, no. 13, pp. S85–S95, 2006.
[2]  S. Siavoshi, C. Yilmaz, S. Somu et al., “Size-selective template-assisted electrophoretic assembly of nanoparticles for biosensing applications,” Langmuir, vol. 27, no. 11, pp. 7301–7306, 2011.
[3]  B. Basnar, M. Litschauer, S. Abermann, E. Bertagnolli, G. Strasser, and M. A. Neouze, “Layer-by-layer assembly of titania nanoparticles based ionic networks,” Chemical Communications, vol. 47, pp. 361–363, 2011.
[4]  S. Easwaramoorthi, P. Kim, J. M. Lim et al., “The self-assembly and photophysical characterization of tri(cyclopenta[def]phenanthrene)-derived nanoparticles: a template free synthesis of hollow colloidosomes,” Journal of Materials Chemistry, vol. 20, no. 43, pp. 9684–9694, 2010.
[5]  D. Jańczewski, N. Tomczak, S. Liu, M. Han, and G. J. Vancso, “Covalent assembly of functional inorganic nanoparticles by “click” chemistry in water,” Chemical Communications, vol. 46, no. 19, pp. 3253–3255, 2010.
[6]  M. Litschauer and M. Neouze, “Nanoparticles connected through an ionic liquid-like network,” Journal of Materials Chemistry, vol. 18, no. 6, pp. 640–646, 2008.
[7]  M. A. Neouze, “About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials,” Journal of Materials Chemistry, vol. 20, no. 43, pp. 9593–9607, 2010.
[8]  L. Wang, J. Luo, M. J. Schadt, and C. Zhong, “Thin film assemblies of molecularly-linked metal nanoparticles and multifunctional properties,” Langmuir, vol. 26, no. 2, pp. 618–632, 2010.
[9]  K. Moller, B. Yilmaz, U. Muller, and T. Bein, “Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer,” Chemistry of Materials, vol. 23, no. 19, pp. 4301–4310, 2011.
[10]  Q. Yao and S. L. Brock, “Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels,” Inorganic Chemistry, vol. 50, no. 20, pp. 9985–9992, 2011.
[11]  J. B. Wacker, V. K. Parashar, and M. A. M. Gijs, “Anisotropic magnetic porous assemblies of oxide nanoparticles interconnected via silica bridges for catalytic application,” Langmuir, vol. 27, no. 8, pp. 4380–4385, 2011.
[12]  M. R. Gao, S. R. Zhang, J. Jiang, Y. R. Zheng, D. Q. Tao, and S. H. Yu, “One-pot synthesis of hierarchical magnetite nanochain assemblies with complex building units and their application for water treatment,” Journal of Materials Chemistry, vol. 21, no. 42, pp. 16888–16892, 2011.
[13]  S. Chen, J. Zhang, T. Wu, P. Feng, and X. Bu, “Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties,” Journal of the American Chemical Society, vol. 131, no. 44, pp. 16027–16029, 2009.
[14]  R. S. Crees, M. L. Cole, L. R. Hanton, and C. J. Sumby, “Synthesis of a zinc(II) imidazolium dicarboxylate ligand metal-organic framework (MOF): a potential precursor to MOF-tethered N-heterocyclic carbene compounds,” Inorganic Chemistry, vol. 49, no. 4, pp. 1712–1719, 2010.
[15]  S. U. Hong, D. Park, Y. Ko, and I. Baek, “Polymer-ionic liquid gels for enhanced gas transport,” Chemical Communications, no. 46, pp. 7227–7229, 2009.
[16]  D. Kerlé, R. Ludwig, A. Geiger, and D. Paschek, “Temperature dependence of the solubility of carbon dioxide in imidazolium-based ionic liquids,” Journal of Physical Chemistry B, vol. 113, no. 38, pp. 12727–12735, 2009.
[17]  A. Mavrandonakis, E. Klontzas, E. Tylianakis, and G. E. Froudakis, “Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A Multiscale Computational Study,” Journal of the American Chemical Society, vol. 131, no. 37, pp. 13410–13414, 2009.
[18]  M. P. Stracke, G. Ebeling, R. Catalu?a, and J. Dupont, “Hydrogen-storage materials based on imidazolium ionic liquids,” Energy and Fuels, vol. 21, no. 3, pp. 1695–1698, 2007.
[19]  A. Revelli, F. Mutelet, and J. Jaubert, “High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether,” Journal of Physical Chemistry B, vol. 114, no. 40, pp. 12908–12913, 2010.
[20]  W. Shi and D. C. Sorescu, “Molecular simulations of CO2 and H2 sorption into ionic liquid 1- n -hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in carbon nanotubes,” Journal of Physical Chemistry B, vol. 114, no. 46, pp. 15029–15041, 2010.
[21]  J. Y. Lee, J. M. Roberts, O. K. Farha, A. A. Sarjeant, K. A. Scheidt, and J. T. Hupp, “Synthesis and gas sorption properties of a Metal-Azolium Framework (MAF) material,” Inorganic Chemistry, vol. 48, no. 21, pp. 9971–9973, 2009.
[22]  M. A. Neouze, M. Litschauer, M. Puchberger, and H. Peterlik, “Porous titania ionic nanoparticle networks,” Langmuir, vol. 27, no. 7, pp. 4110–4116, 2011.
[23]  M. Neouze and U. Schubert, “Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands,” Monatshefte fur Chemie, vol. 139, no. 3, pp. 183–195, 2008.
[24]  M. Litschauer, M. Puchberger, H. Peterlik, and M. Neouze, “Anion metathesis in ionic silica nanoparticle networks,” Journal of Materials Chemistry, vol. 20, no. 7, pp. 1269–1276, 2010.
[25]  H. Friebolin, Basic One- and Two- Dimensional NMR Spectroscopy, Wiley-VCH, Weinheim, Germany, 4th edition, 2004.
[26]  B. Feichtenschlager, S. Pabisch, H. Peterlik, and G. Kickelbick, “Nanoparticle assemblies as probes for self-assembled monolayer characterization: correlation between surface functionalization and agglomeration behavior,” Langmuir, vol. 28, no. 1, pp. 741–750, 2012.
[27]  S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems—a comparison of SAXS, DLS, BET, XRD and TEM,” Chemical Physics Letters, vol. 521, pp. 91–97, 2012.
[28]  J. Brunner-Popela, R. Mittelbach, R. Strey, K. V. Schubert, E. W. Kaler, and O. Glatter, “Small-angle scattering of interacting particles. III. D2O-C12E5 mixtures and microemulsions with n-octane,” Journal of Chemical Physics, vol. 110, no. 21, pp. 10623–10632, 1999.
[29]  G. Beaucage, “Approximations leading to a unified exponential/power-law approach to small-angle scattering,” Journal of Applied Crystallography, vol. 28, pp. 717–728, 1995.
[30]  G. Beaucage and D. W. Schaefer, “Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach,” Journal of Non-Crystalline Solids, vol. 172, no. 2, pp. 797–805, 1994.
[31]  D. J. Kinning and E. L. Thomas, “Hard-sphere interactions between spherical domains in diblock copolymers,” Macromolecules, vol. 17, no. 9, pp. 1712–1718, 1984.
[32]  F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, London, UK, 1999.
[33]  M. Czakler, M. Litschauer, K. F. F?ttinger, H. Peterlik, and M. A. Neouze, “Photoluminescence as complementary evidence for short-range order in ionic silica nanoparticle networks,” The Journal of Physical Chemistry C, vol. 114, no. 49, pp. 21342–21347, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413