全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

DOI: 10.1155/2014/863184

Full-Text   Cite this paper   Add to My Lib

Abstract:

Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs) have become the main building block of silicon photonic (modulators, waveguide, source, and detectors). In this work, we present an approach based on implantation of Ag (or Au) ions and a proper thermal annealing in order to improve the photoluminescence (PL) emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2?μm under surface). Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs. 1. Introduction Despite the great effort made in silicon photonics to achieve efficient Silicon Nanocrystals (Si-NCs), light emitters embedded in a solid silicon dioxide (SiO2) matrix, the photoluminescence (PL) from that kind of devices continues to be too weak for many practical applications [1]. The reason for that resides in two principal aspects: one of them is the well-known quasi-direct band gap in silicon nanocrystals which reduces the probability for radiative transition [1–3], and the other is related to the fact that PL properties of Si-NCs are strongly affected by their surface defects [4, 5]. The Pb defects, or dangling bonds, are known to cause quenching of the PL from Si-NCs [4–6]. Much research has been done to find a method to enhance the PL emission from a system of Si-NCs in SiO2 by controlling the passivation of their surface defects by using gases such as hydrogen (H2), nitrogen (N2), or oxygen (O2) [7–14]. It is well known that a thermal treatment in a molecular hydrogen-containing atmosphere increases the PL from Si-NCs more than Nitrogen or Oxygen [7]. This could be related to the fact that hydrogen diffusion in silica is higher, and consequently a great number of surface defects can be passivated. In many pieces of work the Si-NCs are formed by ion implantation at energies between 35 and

References

[1]  N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser and Photonics Reviews, vol. 3, no. 6, pp. 508–534, 2009.
[2]  D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Physica Status Solidi (B), vol. 215, no. 2, pp. 871–932, 1999.
[3]  V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Advances in Optical Technologies, vol. 2008, Article ID 279502, 32 pages, 2008.
[4]  M. López, B. Garrido, C. García et al., “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Applied Physics Letters, vol. 80, no. 9, pp. 1637–1639, 2002.
[5]  B. G. Fernandez, M. López, C. García et al., “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” Journal of Applied Physics, vol. 91, no. 2, pp. 798–807, 2002.
[6]  D. Hiller, M. Jivanescu, A. Stesmans, and M. Zacharias, “Pb(0) centers at the Si-nanocrystal/ SiO2 interface as the dominant photoluminescence quenching defect,” Journal of Applied Physics, vol. 107, no. 8, Article ID 084309, 2010.
[7]  A. R. Wilkinson and R. G. Elliman, “The effect of annealing environment on the luminescence of silicon nanocrystals in silica,” Journal of Applied Physics, vol. 96, no. 7, pp. 4018–4020, 2004.
[8]  M. Bolduc, G. Genard, M. Yedji et al., “Influence of nitrogen on the growth and luminescence of silicon nanocrystals embedded in silica,” Journal of Applied Physics, vol. 105, no. 1, Article ID 013108, 2009.
[9]  M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, “Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation,” Applied Physics Letters, vol. 72, no. 20, pp. 2577–2579, 1998.
[10]  A. R. Wilkinson and R. G. Elliman, “Passivation of Si nanocrystals in SiO2: atomic versus molecular hydrogen,” Applied Physics Letters, vol. 83, no. 26, pp. 5512–5514, 2003.
[11]  A. R. Wilkinson and R. G. Elliman, “Kinetics of H2 passivation of Si nanocrystals in SiO2,” Physical Review B, vol. 68, no. 15, Article ID 155302, pp. 1–8, 2003.
[12]  R. Lockwood, S. McFarlane, J. R. Rodríguez Nú?ez, X. Y. Wang, J. G. C. Veinot, and A. Meldrum, “Photoactivation of silicon quantum dots,” Journal of Luminescence, vol. 131, no. 7, pp. 1530–1535, 2011.
[13]  J. Bornacelli, J. A. Reyes-Esqueda, L. Rodríguez-Fernández, and A. Oliver, “Improving passivation process of Si nanocrystals embedded in SiO2 using metal ion implantation,” Journal of Nanotechnology, vol. 2013, Article ID 736478, 9 pages, 2013.
[14]  S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree Jr., and J. C. Barbour, “Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2,” Journal of Applied Physics, vol. 86, no. 1, pp. 396–401, 1999.
[15]  Web page, http://www.srim.org/.
[16]  J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM-the stopping and range of ions in matter (2010),” Nuclear Instruments and Methods in Physics Research B, vol. 268, no. 11-12, pp. 1818–1823, 2010.
[17]  J. A. Leavitt, L. C. Mclntyre Jr., and M. R. Weller, “Backscattering spectrometry,” in Handbook of Modern Ion Beam Materials Analysis, J. R. Tesmer and M. Nastasi, Eds., Materials Research Society, Pittsburgh, Pa, USA, 1995.
[18]  V. Rodriguez-Iglesias, O. Pena-Rodriguez, H. G. Silva-Pereyra et al., “Elongated gold nanoparticles obtained by ion implantation in Silica: characterization and T-matrix simulations,” The Journal of Physical Chemistry C, vol. 114, no. 2, pp. 746–751, 2010.
[19]  J. C. Barbour and B. L. Doyle, “Elastic recoil detection: ERD,” in Handbook of Modern Ion Beam Materials Analysis, J. R. Tesmer and M. Nastasi, Eds., Materials Research Society, Pittsburgh, Pa, USA, 1995.
[20]  M. Mayer, “SIMNRA User's Guide,” Technical Report IPP9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997.
[21]  M. Mayer, “SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA,” in Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry, J. L. Duggan and I. L. Morgan, Eds., vol. 475, p. 541, American Institute of Physics Conference Proceedings, 1999.
[22]  J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” Journal of Applied Physics, vol. 86, no. 11, pp. 6128–6134, 1999.
[23]  O. Guillois, N. Herlin-Boime, C. Reynaud, G. Ledoux, and F. Huisken, “Photoluminescence decay dynamics of noninteracting silicon nanocrystals,” Journal of Applied Physics, vol. 95, no. 7, pp. 3677–3682, 2004.
[24]  J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” Journal of Applied Physics, vol. 43, no. 4, pp. 1619–1626, 1972.
[25]  J. Roiz, A. Oliver, E. Mu?oz, L. Rodríguez-Fernández, J. M. Hernández, and J. C. Cheang-Wong, “Modification of the optical properties of Ag-implanted silica by annealing in two different atmospheres,” Journal of Applied Physics, vol. 95, no. 4, pp. 1783–1791, 2004.
[26]  H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Physical Review B, vol. 76, no. 11, Article ID 115123, 2007.
[27]  J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” Journal of Physical Chemistry C, vol. 111, no. 36, pp. 13372–13377, 2007.
[28]  J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Letters, vol. 5, no. 9, pp. 1768–1773, 2005.
[29]  J. B. Johnson and R. C. Burt, “The passage of hydrogen through quartz glass,” Journal of Optical Society of America, vol. 6, no. 7, pp. 734–738, 1922.
[30]  R. M. Barrer, “The mechanism of activated diffusion through silica glass,” Journal of the Chemical Society, vol. 136, pp. 378–386, 1934.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413