全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium

DOI: 10.1155/2013/578684

Full-Text   Cite this paper   Add to My Lib

Abstract:

An improved acrylamide sol-gel technique using a microwave oven in order to synthesize bimetallic Rh-Pd particles is reported and discussed. The synthesis of Pd and Rh nanoparticles was carried out separately. The polymerization to form the gel of both Rh and Pd was carried out at 80°C under constant agitations. The method chosen to prepare the Rh and Pd xerogels involved the decomposition of both gels. The process begins by steadily increasing the temperature of the gel inside a microwave oven (from 80°C to 170°C). In order to eliminate the by-products generated during the sol-gel reaction, a heat treatment at a temperature of 1000°C for 2?h in inert atmosphere was carried out. After the heat treatment, the particle size increased from 50?nm to 200?nm, producing the bimetallic Rh-Pd clusters. It can be concluded that the reported microwave-assisted, sol-gel method was able to obtain nano-bimetallic Rh-Pd particles with an average size of 75?nm. 1. Introduction Bimetallic alloy (solid solutions or intermetallics compounds) nanostructures, synthesized from two single components, have been of interest because of their superior properties, in comparison with their respective single-component species, that is, Ag, Pd, Rh, and so forth [1]. The synthesis of noble metals and alloys, in nanometric scale, has been extensively investigated in nanotechnology because of their optical and electronic properties, as well as for their useful applications in many fields such as medicine [2], catalysis, and sensors [3–6]. Hardness, high melting and boiling points, and high thermal and electrical conductivity are some of the existing properties of these noble metals. Rhodium and palladium (Rh and Pd) crystallize in a face centered cubic (fcc) unit cell. Both metals add s electrons to the collective d band of palladium [7] and increase the lattice parameter of the palladium host lattice [8, 9]. It was found that rhodium behaves as an absorber of hydrogen at high pressure of gaseous hydrogen when situated within the palladium lattice [10, 11]. Recently, Pd nanocrystals have been prepared in aqueous solutions giving rise to a great variety of shapes, including truncated octahedron, cube, octahedron, and thin plate [12–14], making them ideal candidates as seeds for growing bimetallic nanostructures. The control of crystal size and its dispersion are among the main goals of nanocrystal preparation. This is due to the physicochemical properties of a bimetallic nanocrystal that can be tailored by controlling their particle size, shape, and elemental composition, as well as

References

[1]  R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 845–910, 2008.
[2]  T. Ragheb and L. A. Geddes, “Electrical properties of metallic electrodes,” Medical and Biological Engineering and Computing, vol. 28, no. 2, pp. 182–186, 1990.
[3]  Q. Yuan and X. Wang, “Aqueous-based route toward noble metal nanocrystals: morphology-controlled synthesis and their applications,” Nanoscale, vol. 2, no. 11, pp. 2328–2335, 2010.
[4]  H.-C. Kim, S.-M. Park, W. D. Hinsberg, and I. R. Division, “Block copolymer based nanostructures: materials, processes, and applications to electronics,” Chemical Reviews, vol. 110, no. 1, pp. 146–177, 2010.
[5]  M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004.
[6]  D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews, vol. 110, no. 1, pp. 389–458, 2010.
[7]  N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press, London, UK, 1936.
[8]  R. Coles, “Lattice spacings in Ni-Cu and Pd-Ag alloys,” Journal of the Institute of Metals, vol. 84, p. 346, 1956.
[9]  A. Maeland and T. B. Flanagan, “Lattice spacings of gold-palladium alloys,” Canadian Journal of Physics, vol. 42, no. 11, pp. 2364–2366, 1964.
[10]  T. B. Flanagan, B. Baranowski, and S. Majchrzak, “Remarkable interstitial hydrogen contents observed in rhodium-palladium alloys at high pressures,” Journal of Physical Chemistry, vol. 74, no. 24, pp. 4299–4300, 1970.
[11]  B. Baranowski, S. Majchrzak, and T. B. Flanagari, “Diffusion of hydrogen in rhodium-palladium alloys,” The Journal of Physical Chemistry, vol. 77, no. 23, pp. 2804–2807, 1973.
[12]  B. Lim, Y. Xiong, Y. Xia et al., Journal of Materials Research, vol. 3, p. 1367, 1988, Angewandte Chemie International Edition, vol. 46, p.9279, 2007.
[13]  B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, and Y. Xia, “Shape-controlled synthesis of Pd nanocrystals in aqueous solutions,” Advanced Functional Materials, vol. 19, no. 2, pp. 189–200, 2009.
[14]  B. Lim, H. Kobayashi, P. H. C. Camargo, L. F. Allard, J. Liu, and Y. Xia, “New insights into the growth mechanism and surface structure of palladium nanocrystals,” Nano Research, vol. 3, no. 3, pp. 180–188, 2010.
[15]  F.-R. Fan, D.-Y. Liu, Y.-F. Wu et al., “Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes,” Journal of the American Chemical Society, vol. 130, no. 22, pp. 6949–6951, 2008.
[16]  B. Lim, H. Kobayashi, P. H. C. Camargo, L. F. Allard, J. Liu, and Y. Xia, “New insights into the growth mechanism and surface structure of palladium nanocrystals,” Nano Research, vol. 3, no. 3, pp. 180–188, 2010.
[17]  M. Rassoul, F. Gaillard, E. Garbowski, and M. Primet, “Synthesis and characterisation of bimetallic Pd-Rh/alumina combustion catalysts,” Journal of Catalysis, vol. 203, no. 1, pp. 232–241, 2001.
[18]  K. Osseo-Asare and F. J. Arriagada, “Synthesis of nanosize particles in reverse microemulsions,” Ceramic Transactions, vol. 12, pp. 3–16, 1990.
[19]  M. P. Pileni, “Reverse micelles as microreactors,” Journal of Physical Chemistry, vol. 97, no. 27, pp. 6961–6973, 1993.
[20]  I. P. Beletskaya, A. N. Kashin, A. E. Litvinov, V. S. Tyurin, P. M. Valetsky, and G. Van Koten, “Palladium colloid stabilized by block copolymer micelles as an efficient catalyst for reactions of C-C and C-heteroatom bond formation,” Organometallics, vol. 25, no. 1, pp. 154–158, 2006.
[21]  R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, “Synthesis, characterization, and properties of nanophase TiO2,” Journal of Materials Research, vol. 3, no. 6, pp. 1367–1372, 1988.
[22]  D.-H. Kim and J. Kim, “Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties,” Electrochemical and Solid-State Letters, vol. 9, no. 9, pp. A439–A442, 2006.
[23]  R. Uyeda, “The morphology of fine metal crystallites,” Journal of Crystal Growth, vol. 24-25, pp. 69–75, 1974.
[24]  F. Robert, G. Oehme, I. Grassert, and D. Sinou, “Influence of amphiphile concentration on the enantioselectivity in the rhodium-catalyzed reduction of unsaturated substrates in water,” Journal of Molecular Catalysis A, vol. 156, no. 1-2, pp. 127–132, 2000.
[25]  T. Mizuno, Y. Matsumura, T. Nakajima, and S. Mishima, “Effect of support on catalytic properties of Rh catalysts for steam reforming of 2-propanol,” International Journal of Hydrogen Energy, vol. 28, no. 12, pp. 1393–1399, 2003.
[26]  A. Gniewek, A. M. Trzeciak, J. J. Zió?kowski, L. K?piński, J. Wrzyszcz, and W. Tylus, “Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies,” Journal of Catalysis, vol. 229, no. 2, pp. 332–343, 2005.
[27]  R. Narayanan and M. A. El-Sayed, “Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction,” Journal of Physical Chemistry B, vol. 108, no. 25, pp. 8572–8580, 2004.
[28]  V. V. Shumyantseva, S. Carrara, V. Bavastrello et al., “Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes,” Biosensors and Bioelectronics, vol. 21, no. 1, pp. 217–222, 2005.
[29]  I. Willner, R. Baron, and B. Willner, “Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics,” Biosensors and Bioelectronics, vol. 22, no. 9-10, pp. 1841–1852, 2007.
[30]  J. M. D. Zapiter, B. M. Tissue, and K. J. Brewer, “Ruthenium and rhodium complexes anchored to europium oxide nanoparticles,” Inorganic Chemistry Communications, vol. 11, no. 1, pp. 51–56, 2008.
[31]  H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, vol. 1, Academic Press, San Diego, Calif, USA, 2000.
[32]  M. Harada, D. Abe, and Y. Kimura, “Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures,” Journal of Colloid and Interface Science, vol. 292, no. 1, pp. 113–121, 2005.
[33]  J. Jimenez-Mier, G. Herrera, E. Chavira, L. Ba?os, J. Guzmán, and C. Flores, “Synthesis and structural characterization of YVO3 prepared by sol-gel acrylamide polymerization and solid state reaction methods,” Journal of Sol-Gel Science and Technology, vol. 46, no. 1, pp. 1–10, 2008.
[34]  X.-D. Mu, J.-Q. Meng, Z.-C. Li, and Y. Kou, “Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation,” Journal of the American Chemical Society, vol. 127, no. 27, pp. 9694–9695, 2005.
[35]  T. Ashida, K. Miura, T. Nomoto et al., “Synthesis and characterization of Rh(PVP) nanoparticles studied by XPS and NEXAFS,” Surface Science, vol. 601, no. 18, pp. 3898–3901, 2007.
[36]  Y. Huang, J. Chen, H. Chen et al., “Enantioselective hydrogenation of ethyl pyruvate catalyzed by PVP-stabilized rhodium nanoclusters,” Journal of Molecular Catalysis A, vol. 170, no. 1-2, pp. 143–146, 2001.
[37]  J.-L. Pellegatta, C. Blandy, V. Collière et al., “Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene,” Journal of Molecular Catalysis A, vol. 178, no. 1-2, pp. 55–61, 2002.
[38]  S. Morneta, S. Vasseura, F. Grassteb et al., “Magnetic nanoparticle design for medical applications,” Progress in Solid State Chemistry, vol. 34, pp. 237–247, 2006.
[39]  A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996.
[40]  U. Kreibig and M. Vollmer, Optical Properties of Small Metal Clusters, Springer, Berlin, Germany, 1995.
[41]  B. Fegley Jr., P. White, and H. K. Bowen, “Processing and characterization of ZrO2 and Y-Doped ZrO2 powders,” American Ceramic Society Bulletin, vol. 64, no. 8, pp. 1115–1120, 1985.
[42]  M. Ugalde, E. Chavira, M. T. Ochoa-Lara, and C. Quintanar, “New synthesis method to obtain Pd nano-crystals,” Journal of Nano Research, vol. 14, pp. 93–103, 2011.
[43]  A. Sin and P. Odier, “Gelation by Acrylamide, a quasi-universal medium for the synthesis of fine oxide powders for electroceramic applications,” Advanced Materials, vol. 12, no. 9, pp. 649–652, 2000.
[44]  H. Wang, L. Gao, W. Li, and Q. Li, “Preparation of nanoscale α-Al2O3 powder by the polyacrylamide gel method,” Nanostructured Materials, vol. 11, no. 8, pp. 1263–1267, 1999.
[45]  H. Kobayashi, B. Lim, J. Wang et al., “Seed-mediated synthesis of Pd-Rh bimetallic nanodendrites,” Chemical Physics Letters, vol. 494, no. 4–6, pp. 249–254, 2010.
[46]  S. Kishore, J. A. Nelson, J. H. Adair, and P. C. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” Journal of Alloys and Compounds, vol. 389, no. 1-2, pp. 234–242, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133