全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Tapping Mode Measurement for Young’s Modulus of Nanocrystalline Metal Coatings

DOI: 10.1155/2013/761031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Young’s modulus of nanocrystalline metal coatings is measured using the oscillating, that is, tapping, mode of a cantilever with a diamond tip. The resonant frequency of the cantilever changes when the diamond tip comes in contact with a sample surface. A Hertz-contact-based model is further developed using higher-order terms in a Taylor series expansion to determine a relationship between the reduced elastic modulus and the shift in the resonant frequency of the cantilever during elastic contact between the diamond tip and sample surface. The tapping mode technique can be used to accurately determine Young’s modulus that corresponds with the crystalline orientation of the sample surface as demonstrated for nanocrystalline nickel, vanadium, and tantalum coatings. 1. Introduction A variety of indentation-based test methods are used to evaluate strengthening effects [1–4] in materials at the nanoscale. Nanoindentation normal to the surface is routinely used to measure the hardness and Young’s modulus. Triboindentation tests are used [5–7] to measure both hardness and shear strength as well as quantify strain-rate sensitivity [8, 9] effects in the evaluation of deformation mechanisms in nanocrystalline alloys. The standard approach [10–12] to determine the elastic modulus during nanoindentation evaluates the load ( ) versus displacement ( ) curve during unloading after plastic deformation. It remains difficult to collect a sufficient quantity of versus data during elastic loading since elastic displacements ( ) are commonly limited to depths of only a few nanometers or less in many hard materials. The initial linear slope ( ) of the power-law-shaped unloading curve is used [11, 12] to determine the reduced elastic modulus ( ) as The contact area ( ) equals the square of the contact depth ( ) multiplied by the tip area ( ) coefficient, and the shape parameter equals 1.00 for flat punch, 1.034 for Berkovich, and 1.012 for Vickers indenter tips. The reduced elastic modulus ( ) of the indenter tip and sample surface system is related to the elastic moduli of the indenter tip and sample surface as Here, the subscripts and represent the probe tip and sample, respectively, for the Poisson ratio ( ) and Young’s modulus ( ) values. Indentation size effects (ISEs) are found with the directional loading of the indenter tip. For example, beyond an indentation depth, that is, 10% of the film thickness, the use of a Meyer plot indicates [13, 14] that the substrate material contributes to the elastic and plastic property measurements of the coating. Also, the sensitivity

References

[1]  T. G. Nieh and J. Wadsworth, “Hall-petch relation in nanocrystalline solids,” Scripta Metallurgica et Materiala, vol. 25, no. 4, pp. 955–958, 1991.
[2]  C. A. Schuh, T. G. Nieh, and H. Iwasaki, “The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni,” Acta Materialia, vol. 51, no. 2, pp. 431–443, 2003.
[3]  A. F. Jankowski, C. K. Saw, J. F. Harper, B. F. Vallier, J. L. Ferreira, and J. P. Hayes, “Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits,” Thin Solid Films, vol. 494, no. 1-2, pp. 268–273, 2006.
[4]  M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, “Toward a quantitative understanding of mechanical behavior of nanocrystalline metals,” Acta Materialia, vol. 55, no. 12, pp. 4041–4065, 2007.
[5]  N. Tayebi, T. F. Conry, and A. A. Polycarpou, “Determination of hardness from nanoscratch experiments: corrections for interfacial shear stress and elastic recovery,” Journal of Materials Research, vol. 18, no. 9, pp. 2150–2162, 2003.
[6]  C. A. Schuh, T. G. Nieh, and T. Yamasaki, “Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel,” Scripta Materialia, vol. 46, no. 10, pp. 735–740, 2002.
[7]  K. M. Lee, C.-D. Yeo, and A. A. Polycarpou, “Nanomechanical property and nanowear measurements for Sub-10-nm thick films in magnetic storage,” Experimental Mechanics, vol. 47, no. 1, pp. 107–121, 2007.
[8]  J. Chen, L. Lu, and K. Lu, “Hardness and strain rate sensitivity of nanocrystalline Cu,” Scripta Materialia, vol. 54, no. 11, pp. 1913–1918, 2006.
[9]  L. O. Nyakiti and A. F. Jankowski, “Characterization of strain-rate sensitivity and grain boundary structure in nanocrystalline gold-copper alloys,” Metallurgical and Materials Transactions A, vol. 41, no. 4, pp. 838–847, 2010.
[10]  M. F. Doerner and W. D. Nix, “A method for interpreting the data from a depth sensing indentation instrument,” Journal of Materials Research, vol. 1, no. 4, pp. 601–609, 1986.
[11]  W. C. Oliver and G. M. Pharr, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 6, pp. 1564–1583, 1992.
[12]  W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” Journal of Materials Research, vol. 19, no. 1, pp. 3–20, 2004.
[13]  E. Z. Meyer, “Untersuchungen über H?rteprüfung und H?rte,” Zeitschrift des Vereines Deutscher Ingenieure, vol. 52, pp. 645–654, 1908.
[14]  A. F. Jankowski, “Superhardness effect in Au/Ni multilayers,” Journal of Magnetism and Magnetic Materials, vol. 126, no. 1–3, pp. 185–191, 1993.
[15]  J. J. Vlassak and W. D. Nix, “Measuring the elastic properties of anisotropic materials by means of indentation experiments,” Journal of the Mechanics and Physics of Solids, vol. 42, no. 8, pp. 1223–1245, 1994.
[16]  J. G. Swadener and G. M. Pharr, “Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution,” Philosophical Magazine A, vol. 81, no. 2, pp. 447–466, 2001.
[17]  A. Delafargue and F.-J. Ulm, “Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters,” International Journal of Solids and Structures, vol. 41, no. 26, pp. 7351–7360, 2004.
[18]  F. A. McClintock and A. S. Argon, “Other measures of plastic hardness,” in Mechanical Behavior of Materials, vol. 13 of Addison-Wesley Series in Metallurgy and Materials, pp. 450–458, Addison-Wesley, Reading, 1966.
[19]  D. Tabor, “The hardness of solids,” Review of Physics in Technology, vol. 1, no. 3, pp. 145–179, 1970.
[20]  M. Reinst?dtler, T. Kasai, U. Rabe, B. Bhushan, and W. Arnold, “Imaging and measurement of elasticity and friction using the TRmode,” Journal of Physics D, vol. 38, no. 18, pp. R269–R282, 2005.
[21]  D. DeVecchio and B. Bhushan, “Localized surface elasticity measurements using an atomic force microscope,” Review of Scientific Instruments, vol. 68, no. 12, pp. 4498–4505, 1997.
[22]  R. Whiting and M. A. Angadi, “Young's modulus of thin films using a simplified vibrating reed method,” Measurement Science and Technology, vol. 1, no. 7, article 024, pp. 662–664, 1990.
[23]  K.-D. Wantke, H. Fruhner, J. Fang, and K. Lunkenheimer, “Measurements of the surface elasticity in medium frequency range using the oscillating bubble method,” Journal of Colloid and Interface Science, vol. 208, no. 1, pp. 34–48, 1998.
[24]  A. S. Useinov, “A nanoindentation method for measuring the Young modulus of superhard materials using a NanoScan scanning probe microscope,” Instruments and Experimental Techniques, vol. 47, no. 1, pp. 119–123, 2004.
[25]  K. V. Gogolinskiǐ, Z. Y. Kosakovskaya, A. S. Useinov, and I. A. Chaban, “Measurement of the elastic moduli of dense layers of oriented carbon nanotubes by a scanning force microscope,” Acoustical Physics, vol. 50, no. 6, pp. 664–669, 2004.
[26]  S. I. Lee, S. W. Howell, A. Raman, and R. Reifenberger, “Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment,” Physical Review B, vol. 66, no. 11, Article ID 115409, 10 pages, 2002.
[27]  O. Sahin and N. Erina, “High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy,” Nanotechnology, vol. 19, no. 44, Article ID 445717, 2008.
[28]  D. W. Chun, K. S. Hwang, K. Eom et al., “Detection of the Au thin-layer in the Hz per picogram regime based on the microcantilevers,” Sensors and Actuators A, vol. 135, no. 2, pp. 857–862, 2007.
[29]  N. Gitis, M. Vinogradov, I. Hermann, and S. Kuiry, “Comprehensive mechanical and tribological characterization of ultra-thin films,” MRS Proceedings, vol. 1049, 2008.
[30]  A. F. Jankowski, “Vapor deposition and characterization of nanocrystalline nanolaminates,” Surface and Coatings Technology, vol. 203, no. 5-7, pp. 484–489, 2008.
[31]  A. F. Jankowski, “On eliminating deposition-induced amorphization of interfaces in refractory metal multilayer systems,” Thin Solid Films, vol. 220, no. 1-2, pp. 166–171, 1992.
[32]  A. F. Jankowski, J. P. Hayes, T. E. Felter, C. Evans, and A. J. Nelson, “Sputter deposition of silicon-oxide coatings,” Thin Solid Films, vol. 420-421, pp. 43–46, 2002.
[33]  A. F. Jankowski, M. A. Wall, A. W. Van Buuren, T. G. Nieh, and J. Wadsworth, “From nanocrystalline to amorphous structure in beryllium-based coatings,” Acta Materialia, vol. 50, no. 19, pp. 4791–4800, 2002.
[34]  A. F. Jankowski, C. K. Saw, C. C. Walton, J. P. Hayes, and J. Nilsen, “Boron-carbide barrier layers in scandium-silicon multilayers,” Thin Solid Films, vol. 469-470, pp. 372–376, 2004.
[35]  A. F. Jankowski, J. P. Hayes, and C. K. Saw, “Dimensional attributes in enhanced hardness of nanocrystalline Ta-V nanolaminates,” Philosophical Magazine, vol. 87, no. 16, pp. 2323–2334, 2007.
[36]  A. F. Jankowski and M. A. Wall, “Transmission electron microscopy of Ni/Ti neutron mirrors,” Thin Solid Films, vol. 181, no. 1-2, pp. 305–312, 1989.
[37]  A. F. Jankowski and M. A. Wall, “Synthesis and characterization of nanophase face-centered-cubic titanium,” Nanostructured Materials, vol. 7, no. 1-2, pp. 89–94, 1996.
[38]  H. S. T. Ahmed, Use of dynamic test methods to reveal mechanical properties of nanomaterials [Ph.D. thesis], Texas Tech University, 2010.
[39]  J. F. Nye, Physical Properties of Crystals, Oxford Press, Oxford, UK, 1960.
[40]  J. R. Neighbours and G. A. Alers, “Elastic constants of silver and gold,” Physical Review, vol. 111, no. 3, pp. 707–712, 1958.
[41]  G. A. Alers, “Elastic moduli of vanadium,” Physical Review, vol. 119, no. 5, pp. 1532–1535, 1960.
[42]  F. H. Featherston and J. R. Neighbours, “Elastic constants of tantalum, tungsten, and molybdenum,” Physical Review, vol. 130, no. 4, pp. 1324–1333, 1963.
[43]  B. T. Bernstein, “Elastic constants of synthetic sapphire at 27°,” Journal of Applied Physics, vol. 34, no. 1, pp. 169–172, 1963.
[44]  H. M. Trent, D. E. Stone, and L. A. Beaubien, “Elastic constants, hardness, strength, elastic limits, and diffusion coefficients of solids,” in American Institute of Physics Handbook, Section 2, pp. 49–59, McGraw Hill, New York, NY, USA, 1972.
[45]  H. P. R. Frederikse, “Elastic Constants of Single Crystals,” in Handbook of Chemistry and Physics, D. Lide, Ed., section 12, pp. 33–38, CRC Press Taylor and Francis, Boca Raton, Fla, USA, 88th edition, 2008.
[46]  J. Hay, Application Notes 5990-4853EN (Agilent Technology), 2009,.
[47]  Y. Yamada-Takamura, E. Shimono, and T. Toshida, “Nanoindentation characterization of cBN films deposited from vapor phase,” in Proceedings of the 14th International Symposium on Plasma Chemistry (ISPC '14), M. Hrabovsky, Ed., vol. 3, pp. 1629–1634, Prague, Czech Republic.
[48]  J. Y. Rho and G. M. Pharr, “Nanoindentation testing of bone,” in Mechanical Testing of Bone and the Bone-Implant Interface, Y. H. An and R. A. Draughn, Eds., chapter 17, pp. 257–269, CRC Press, New York, NY, USA, 2000.
[49]  K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” in Proceedings of the Royal Society A, vol. 324, pp. 301–313, 1971.
[50]  Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Reviews on Advanced Materials Science, vol. 5, no. 4, pp. 348–353, 2003.
[51]  B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” Journal of Colloid And Interface Science, vol. 53, no. 2, pp. 314–326, 1975.
[52]  J. Drelich, “Adhesion forces measured between particles and substrates with nano-roughness,” Minerals and Metallurgical Processing, vol. 23, no. 4, pp. 226–232, 2006.
[53]  M. M. McCann, Nanoindentation of gold single crystals [Ph.D. thesis], Virginia Polytechnic Institute and State University, 2004.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133