全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parameter Estimation and Hybrid Lag Synchronization in Hyperchaotic Lü Systems

DOI: 10.1155/2014/842790

Full-Text   Cite this paper   Add to My Lib

Abstract:

The antiphase and complete lag synchronization of hyperchaotic Lü systems with unknown parameters is investigated. Based on the Lyapunov stability theory, the sufficient conditions for achieving hybrid lag synchronization are derived. The optimized parameter observers are approached analytically via adaptive control approach. Numerical simulation results are presented to verify the effectiveness of the proposed scheme. 1. Introduction Chaos has been thoroughly studied over the past two decades for its “random” behavior and sensitive dependence on the initial conditions. Despite the complexity and unpredictability of chaotic behavior [1], it can be controlled and two chaotic systems can be synchronized [2]. Since Pecora and Carroll introduced a method to synchronize two identical chaotic dynamical systems [3], the synchronization of chaotic dynamical systems attracted much attention due to its theoretical challenge and potential application in secure communications, chemical reactions, biomedical science, social science, and many other fields [4–6]. Various synchronizations have been presented, such as complete synchronization (CS), phase synchronization (PS), lag synchronization (LS) or anticipated synchronization (AS), and generalized synchronization (GS) [7–16]. Subsequently, many effective synchronization methods have been proposed, such as linear or nonlinear feedback synchronization, adaptive synchronization, lag synchronization, Q-S synchronization, and anticipated synchronization [17–26]. It is an interesting problem that part of the states of the interactive chaotic system are synchronized in one type of synchronization while other states synchronized in another type of synchronization. This phenomenon is taken as mixed synchronization. Due to the potential applications of it, some types of mixed synchronization are introduced recently. In [27], some variables may converge into synchronization while other variables are in antisynchronization state in Chen-Lee chaotic systems. In [28], using a scalar coupling, some of the state variables may be in complete synchronization while others may be in antisynchronization state in two unidirectionally coupled chaotic oscillators. It is found that lag synchronization has important technological implications. Generally, lag synchronization can be trivially accomplished by coupling the response system to a past state of the drive system or by mismatching of the system parameters. Therefore, inspired by [29, 30], it is invited to investigate the coexistence lag synchronization of chaotic systems via linear

References

[1]  P. van Geert, Dynamic Systems of Development: Change between Complexity and Chaos, Harvester Wheatsheaf, 1994.
[2]  S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Physics Report, vol. 366, no. 1-2, pp. 1–101, 2002.
[3]  L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[4]  Q.-Y. Wang, Q.-S. Lu, and H.-X. Wang, “Transition to complete synchronization via near-synchronization in two coupled chaotic neurons,” Chinese Physics, vol. 14, no. 11, pp. 2189–2195, 2005.
[5]  Z.-M. Ge and C.-C. Chen, “Phase synchronization of coupled chaotic multiple time scales systems,” Chaos, Solitons and Fractals, vol. 20, no. 3, pp. 639–647, 2004.
[6]  C. Li, X. Liao, and K.-W. Wong, “Lag synchronization of hyperchaos with application to secure communications,” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 183–193, 2005.
[7]  J. Yang and G. Hu, “Three types of generalized synchronization,” Physics Letters A: General, Atomic and Solid State Physics, vol. 361, no. 4-5, pp. 332–335, 2007.
[8]  L. Wang, Z. Yuan, X. Chen, and Z. Zhou, “Lag synchronization of chaotic systems with parameter mismatches,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 987–992, 2011.
[9]  E. M. Shahverdiev, S. Sivaprakasam, and K. A. Shore, “Lag synchronization in time-delayed systems,” Physics Letters A: General, Atomic and Solid State Physics, vol. 292, no. 6, pp. 320–324, 2002.
[10]  T.-Y. Chiang, J.-S. Lin, T.-L. Liao, and J.-J. Yan, “Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity,” Nonlinear Analysis: Theory, Methods and Applications, vol. 68, no. 9, pp. 2629–2637, 2008.
[11]  M. Hu and Z. Xu, “A general scheme for Q-S synchronization of chaotic systems,” Nonlinear Analysis: Theory, Methods and Applications, vol. 69, no. 4, pp. 1091–1099, 2008.
[12]  Z.-L. Wang and X.-R. Shi, “Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 1091–1097, 2009.
[13]  M. M. Al-Sawalha and M. S. M. Noorani, “Anti-synchronization of two hyperchaotic systems via nonlinear control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3402–3411, 2009.
[14]  S. Banerjee and A. R. Chowdhury, “Functional synchronization and its application to secure communications,” International Journal of Modern Physics B, vol. 23, no. 9, pp. 2285–2295, 2009.
[15]  M. Mossa Al-sawalha, M. S. M. Noorani, and M. M. Al-dlalah, “Adaptive anti-synchronization of chaotic systems with fully unknown parameters,” Computers and Mathematics with Applications, vol. 59, no. 10, pp. 3234–3244, 2010.
[16]  J. Ma, Q.-Y. Wang, W.-Y. Jin, and Y.-F. Xia, “Control chaos in Hindmarsh-Rose neuron by using intermittent feedback with one variable,” Chinese Physics Letters, vol. 25, no. 10, pp. 3582–3585, 2008.
[17]  Z. Li and D. Xu, “A secure communication scheme using projective chaos synchronization,” Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 477–481, 2004.
[18]  A. N. Njah, “Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques,” Nonlinear Dynamics, vol. 61, no. 1-2, pp. 1–9, 2010.
[19]  J. H. Park, “Synchronization of Genesio chaotic system via backstepping approach,” Chaos, Solitons and Fractals, vol. 27, no. 5, pp. 1369–1375, 2006.
[20]  J. Ma, W.-T. Su, and J.-Z. Gao, “Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model,” Acta Physica Sinica, vol. 59, no. 3, pp. 1554–1561, 2010.
[21]  C.-F. Feng, Y. Zhang, J.-T. Sun, W. Qi, and Y.-H. Wang, “Generalized projective synchronization in time-delayed chaotic systems,” Chaos, Solitons and Fractals, vol. 38, no. 3, pp. 743–747, 2008.
[22]  J. Ma, F. Li, L. Huang, and W.-Y. Jin, “Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 9, pp. 3770–3785, 2011.
[23]  Z. Wang, “Chaos synchronization of an energy resource system based on linear control,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 3336–3343, 2010.
[24]  C. K. Volos, I. M. Kyprianidis, and I. N. Stouboulos, “Various synchronization phenomena in bidirectionally coupled double scroll circuits,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 8, pp. 3356–3366, 2011.
[25]  A. A. Selivanov, J. Lehnert, T. Dahms, P. H?vel, A. L. Fradkov, and E. Sch?ll, “Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators,” Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 85, no. 1, Article ID 016201, 2012.
[26]  D. Ghosh, A. R. Chowdhury, and P. Saha, “Multiple delay R?ssler system-Bifurcation and chaos control,” Chaos, Solitons and Fractals, vol. 35, no. 3, pp. 472–485, 2008.
[27]  J.-H. Chen, H.-K. Chen, and Y.-K. Lin, “Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems,” Chaos, Solitons and Fractals, vol. 39, no. 2, pp. 707–716, 2009.
[28]  S. K. Bhowmick, C. Hens, D. Ghosh, et al., “Mixed synchronization in chaotic oscillators using scalar coupling,” Physics Letters A: General, Atomic and Solid State Physics, vol. 376, no. 36, pp. 2490–2495, 2012.
[29]  Q. Zhang, J. Lü, and S. Chen, “Coexistence of anti-phase and complete synchronization in the generalized Lorenz system,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 10, pp. 3067–3072, 2010.
[30]  M.-C. Ho, Y.-C. Hung, and C.-H. Chou, “Phase and anti-phase synchronization of two chaotic systems by using active control,” Physics Letters A: General, Atomic and Solid State Physics, vol. 296, no. 1, pp. 43–48, 2002.
[31]  S. Pang and Y. Liu, “A new hyperchaotic system from the Lü system and its control,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2775–2789, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133