全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Suboptimal Control Strategies for Finite-Time Nonlinear Processes with Input Constraints

DOI: 10.1155/2013/182034

Full-Text   Cite this paper   Add to My Lib

Abstract:

Novel techniques for the optimization and control of finite-time processes in real-time are pursued. These are developed in the framework of the Hamiltonian optimal control. Two methods are designed. The first one constructs the reference control trajectory as an approximation of the optimal control via the Riccati equations in an adaptive fashion based on the solutions of a set of partial differential equations called the and matrices. These allow calculating the Riccati gain for a range of the duration of the process and the final penalization . The second method introduces input constraints to the general optimization formulation. The notions of linear matrix inequalities allow us to recuperate the Riccati gain as in the first method, but using an infinite horizon optimization method. Finally, the performance of the proposed strategies is illustrated through numerical simulations applied to a batch reactor and a penicillin fed-batch reactor. 1. Introduction Batch processes have received much attention during the past two decades due to developing chemical and pharmaceutical products, new polymers, and recent biotechnological applications. Usually, the engineers state that a batch process has three operative stages: start-up, batch run, and shutdown. While these three stages are widely studied by the engineers for each particular batch process, it is important to note that in a wide number of cases, the batch run stage is far from an optimal operation, supported only with the experience of operators and engineers. Control techniques have been made inroad in the industry in order to improve the performance of the process. In batch context, interesting ideas such as controllability, observability, and stability have been introduced despite the duration of batch processes. Numerous control techniques have been adapted to the peculiarities of these kinds of systems. One example is the model predictive control (MPC). This method is essentially numerical, usually implemented on-line. Most successful industrial applications of MPC reported so far are in refining and petrochemical plants (see for instance [1, 2]), where processes are run near optimal steady-states and model linearizations are reliable approximations. In spite of its many advantages, some undesired disadvantages (such as the high computational cost) have caused a major problem: only a few of the available commercial software packages are cautiously suggested for truly nonlinear batch processes as it is reported in [3]. Here, the optimal control paradigm is tackled, where the Hamiltonian

References

[1]  E. F. Camacho and C. Bordons, Model Predictive Control, Springer, London, UK, 2nd edition, 2004.
[2]  B. W. Bequette, “Non-linear model predictive control: a personal retrospective,” Canadian Journal of Chemical Engineering, vol. 85, no. 4, pp. 408–415, 2007.
[3]  S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.
[4]  E. D. Sontag, Mathematical Control Theory. Deterministic Finite Dimensional System, Springer, 1998.
[5]  V. Costanza and P. S. Rivadeneira, “Minimal-power control of hydrogen evolution reactions,” Optimal Control Applications and Methods, vol. 31, no. 2, pp. 105–115, 2010.
[6]  G. Fraser-Andrews, “A multiple-shooting technique for optimal control,” Journal of Optimization Theory and Applications, vol. 102, no. 2, pp. 299–313, 1999.
[7]  C. J. Goh and K. L. Teo, “Control parametrization: a unified approach to optimal control problems with general constraints,” Automatica, vol. 24, no. 1, pp. 3–18, 1988.
[8]  M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.
[9]  T. Cheng, F. L. Lewis, and M. Abu-Khalaf, “Fixed-final-time-constrained optimal control of nonlinear systems using neural network HJB approach,” IEEE Transactions on Neural Networks, vol. 18, no. 6, pp. 1725–1737, 2007.
[10]  H. H. Mehne and A. H. Borzabadi, “A numerical method for solving optimal control problems using state parametrization,” Numerical Algorithms, vol. 42, no. 2, pp. 165–169, 2006.
[11]  C. Büskens and H. Maurer, “SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control,” Journal of Computational and Applied Mathematics, vol. 120, no. 1-2, pp. 85–108, 2000.
[12]  H. A. Gonzalez, E. J. Adam, D. Odloak, and J. L. Marchetti, “Infinite horizon mpc applied to batch processes—part I,” in Proceedings of the 13th Reunión de Trabajo en Procesamiento de la Información y Control (RPIC'09), Rosario, Argentina, September 2009.
[13]  M. Matinfar and M. Saeidy, “A new analytical method for solving a class of nonlinear optimal control problems,” Optimal Control Applications and Methods, 2013.
[14]  A. Rao, “A survey of numerical methods for optimal control,” Advances in the Astronautical Sciences, vol. 135, pp. 497–528, 2009.
[15]  V. Costanza, “Regular optimal control problems with quadratic final penalties,” Revista de la Unión Matemática Argentina, vol. 49, pp. 43–56, 2008.
[16]  G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, USA, 2nd edition, 1995.
[17]  A. I. Zenchuk and P. M. Santini, “Dressing method based on the homogeneous Fredholm equation: quasilinear PDEs in multidimensions,” Journal of Physics A, vol. 40, no. 23, article 010, pp. 6147–6174, 2007.
[18]  V. Costanza and P. S. Rivadeneira, “Finite-horizon dynamic optimization of nonlinear systems in real time,” Automatica, vol. 44, no. 9, pp. 2427–2434, 2008.
[19]  V. Costanza, P. S. Rivadeneira, and R. D. Spies, “Equations for the missing boundary values in the hamiltonian formulation of optimal control problems,” Journal of Optimization Theory and Applications, vol. 149, no. 1, pp. 26–46, 2011.
[20]  V. Costanza and P. S. Rivadeneira, “Optimal saturated feedback laws for lqr problems with bounded controls,” Computational and Applied Mathamatics, vol. 43, pp. 111–123, 2013.
[21]  S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, 1994.
[22]  M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996.
[23]  C. A. Cappelletti and E. J. Adam, “Dise?o de un control de nivel de un sistema hidráulico con restricciones utilizando lmi,” in Proceedings of the 21st Congreso Argentino de Control Automático (AADECA'08), Buenos Aires, Argentina, September 2008.
[24]  K. S. Lee and J. H. Lee, “Model predictive control for nonlinear batch processes with asymptotically perfect tracking,” Computers and Chemical Engineering, vol. 21, supplement 1, pp. S873–S879, 1997.
[25]  E. J. Adam, “. Adaptive iterative learning control applied to nonlinear batch reactor,” in Proceedings of the 13th Reunión de Trabajo en Procesamiento de la Información y Control (RPIC'07), Río Gallegos, Argentina, October 2007.
[26]  J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.
[27]  J. E. Cuthrell and L. T. Biegler, “Simultaneous optimization and solution methods for batch reactor control profiles,” Computers and Chemical Engineering, vol. 13, no. 1-2, pp. 49–62, 1989.
[28]  J. R. Banga, E. Balsa-Canto, C. G. Moles, and A. A. Alonso, “Dynamic optimization of bioprocesses: efficient and robust numerical strategies,” Journal of Biotechnology, vol. 117, no. 4, pp. 407–419, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133