全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Studies on the Rain Scavenging Process of Tritium in a Tropical Site at Narora in India

DOI: 10.1155/2013/849732

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents the results of systematic experiments on tritium (3H) concentrations in ground level air against those in rainwater near a pressurized heavy water reactor in a tropical region. The samples were collected over the rainy season of year 2011 from eight locations in the environment around Narora Atomic Power Station. The specific activity ratio of 3H between rainwater and air moisture at ground level was calculated for each data set. The average specific activity ratio was found to be ranged from 0.12 to 1.1. A correlation ( to 0.76, ) was observed between the total rain hours in a day and the rainwater 3H activity. Higher rain duration with slower rain rate yielded higher 3H concentrations as more time was available for the scavenging/wash-out process to take effect together with lower dilution. Annual tritium (HTO) wet deposition has been measured and calculated for the year 2011 within 0.8?km distance from 145?m high stack of Narora Atomic Power Station (NAPS) at nine locations in different directions. The range of deposition velocity, (m·s?1), at nine locations for the years 2011 is found to be from 4.43E???04 to 6.42E???03. The average value for wet deposition velocity for NAPS site is estimated as 3.17E???03?m·s?1. 1. Introduction Tritium (3H) is one of the major long-lived radioisotopes in the gaseous effluent released from any Pressurized Heavy Water Reactor (PHWR). Tritium produced in a PHWR is released into the atmosphere in the form of tritiated water vapour (HTO) [1]. Because of its physicochemical similarity with water, HTO is incorporated in all environmental matrices such as soil, air, and biota. In order to carry out an impact assessment due to 3H, it is necessary to understand the kinetics of transfer of 3H through the various environmental matrices. The process of 3H removal from the atmosphere is by either wet or dry deposition [2]. When raindrops pass vertically through an HTO plume, rainwater scavenges 3H from the air due to a wash-out process. Scavenging by rain is one of the phenomena which transfers substances present in the atmosphere to the ground. It consists of two steps, known as in-cloud scavenging (rain out) and below cloud scavenging (wash out) [3]. Scavenging ratios represent the vertical scavenging efficiencies of transfer from the atmosphere to rainwater. Velarde and Perlado [4] reported that wet deposition is critical for the incorporation of tritiated water vapour into the natural biological chain. It has been reported that the wash-out coefficient of ?3H depends upon the distance from the source,

References

[1]  B. G. Blaylock, F. O. Hoffman, and M. L. Frank, “Tritium in the aquatic environment,” Radiation Protection Dosimetry, vol. 16, no. 1-2, pp. 65–71, 1986.
[2]  C. Boyer, L. Vichot, M. Fromm et al., “Tritium in plants: a review of current knowledge,” Environmental and Experimental Botany, vol. 67, no. 1, pp. 34–51, 2009.
[3]  M. De Bortoli and P. Gaglione, “Variability of wash out ratio for some fallout radionuclides, physical behaviour of radioactive contaminants in the atmosphere,” in Proceedings of the Symposium Jointly Organised by IAEA and World Meteorological Organization, pp. 167–180, Vienna, Austria, 1974.
[4]  M. Velarde and M. Perlado, “Tritium gas and tritiated water vapour behaviour in the environment from releases into the atmosphere from fusion reactors,” Fusion Engineering and Design, vol. 58-59, pp. 1123–1126, 2001.
[5]  Y. Belot, “Predicting the wash out of tritiated water from the atmospheric plumes,” in Workshop of the IEA Task Group on Tritium Safety and Environmental Effects. AECL, Chalk River, Canada, 1998.
[6]  V. Abrol, “Estimation of wash out of tritiated water (HTO) effluent by rain drops,” Bulletin of Radiation Protection, vol. 13, pp. 23–26, 1990.
[7]  J. M. Hales, Scavenging of Gaseous Tritium Compounds by Rain. BNWL-1659, Battelle, Pacific Northwest Laboratories, Richland, Washington, DC, USA, 1972.
[8]  J. M. Hales, “Fundamentals of the theory of gas scavenging by rain,” Atmospheric Environment, vol. 6, no. 9, pp. 635–659, 1972.
[9]  M. T. Dana, N. A. Wogman, and M. A. Wolf, “Rain scavenging of tritiated water (HTO): a field experiment and theoretical considerations,” Atmospheric Environment, vol. 12, no. 6-7, pp. 1523–1529, 1978.
[10]  L. F. Belovodski, V. K. Gaevoy, A. V. Golubev, and T. A. Kosheleva, “Tritium oxide wash-out by drops,” Journal of Environmental Radioactivity, vol. 36, no. 2-3, pp. 129–139, 1997.
[11]  D. P. Nankar, A. K. Patra, P. M. Ravi, C. P. Joshi, A. G. Hegde, and P. K. Sarkar, “Studies on the rain scavenging process of tritium in a tropical site in India,” Journal of Environmental Radioactivity, vol. 104, pp. 7–13, 2011.
[12]  T. K. Reji, P. M. Ravi, T. L. Ajith, B. N. Dileep, A. G. Hegde, and P. K. Sarkar, “Environmental transport of Tritium and estimation of site-specific model parametres for Kiaga site, India,” Radiation Protection Dosimetry, 2011.
[13]  Y. P. Gautam, A. K. Sharma, S. Sharma et al., “Monitoring of atmospheric H around narora atomic power station,” Journal of Radioanalytical and Nuclear Chemistry, vol. 285, no. 3, pp. 425–430, 2010.
[14]  R. E. Faw and J. K. Shultis, “Atmospheric dispersion of radionuclides,” in Radiological Assessment: Sources and Doses, p. 465, American Nuclear Society, La Grange Park, Ill, USA, 1999.
[15]  N. Miljevi?, V. ?ipka, A. ?uji?, and D. Golobo?anin, “Tritium around the vinca institute of nuclear sciences,” Journal of Environmental Radioactivity, vol. 48, no. 3, pp. 303–315, 2000.
[16]  D. Attanassov and D. Galeriu, “Rain scavenging of tritiated water vapour: a numerical Eulerian stationary model,” Journal of Environmental Radioactivity, vol. 102, no. 1, pp. 43–52, 2010.
[17]  K. J. Vogt, “Models for accessing the environmental exposure by tritium released from nuclear installations,” in Proceedings of the IAEA-SM-232/15, pp. 521–534, 1979.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133