全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prevalence of Anemia and Associated Factors in Child Bearing Age Women in Riyadh, Saudi Arabia

DOI: 10.1155/2013/636585

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To determine the prevalence and risk factors for anemia in child bearing age women in Riyadh, Saudi Arabia. Design. Cross-sectional survey was conducted using two-stage cluster sampling. 25 clusters (primary health care centers (PHCC)) were identified from all over Riyadh, and 45–50 households were randomly selected from each cluster. Eligible women were invited to PHCC for questionnaire filling, anthropometric measurements, and complete blood count. Blood hemoglobin was measured with Coulter Cellular Analysis System using light scatter method. Setting. PHCC. Subjects. 969 (68%) women out of 1429 women were included in the analysis. Results. Mean hemoglobin was 12.35 ( )?g/dL, 95% CI 12.24–12.46 with interquartile range of 1.9. Anemia (Hb <12?g/dL) was present in 40% (390) women. Mean (±SD) for MCH, MCV, MCHC, and RDW was 79.21 (±12.17)?fL, 26.37 (±6.21)?pg, 32.36 (±4.91)?g/dL, and 14.84 (±4.65)%, respectively. Multivariate logistic regression revealed that having family history of iron deficiency anemia (OR 2.91, 95% CI 1.78–4.76) and infrequent intake of meat (OR 1.54, 95%CI 1.15–2.05) were associated with increased risk of anemia, whereas increasing body mass index (OR 0.95, 95% CI 0.92–0.97) was associated with reduced risk of anemia. Conclusion. Women should be educated about proper diet and reproductive issues in order to reduce the prevalence of anemia in Saudi Arabia. 1. Introduction Anemia is a public health issue for developing countries, especially for child bearing age women [1]. The worldwide prevalence of anemia in child bearing age group is quite high (30.2%) [1]. According to World Health Organization (WHO) report, 32.3% nonpregnant women of child bearing age are suffering from anemia in Saudi Arabia [1]. AlQuaiz conducted a hospital-based study and found 37% of women suffering from anemia in Riyadh, Saudi Arabia [2]. Anemia is a multifactor disease and can act both as a risk factor or a consequence of a disease [3]. There are various modifiable and nonmodifiable factors affecting anemia in combination or alone. These may range from ethnicity, gender, age, sociodemographic status, dietary habits, physical and mental health, gynecological/obstetric history, cancers, and anticancerous drugs to genetic makeup [3]. Specific risk factors include deficiency of iron, worm infestation, repeated pregnancies, menorrhagia, postpartum hemorrhage, gastric ulcers, hemorrhoids, intake of aspirin/nonsteroidal anti-inflammatory drugs, and pure vegetarian diet [3]. Controversial results from long- and short-term intervention studies on the role

References

[1]  World Health Organization Report, “World Prevalence of Anemia 1993–2005. WHO global data base on anemia,” 2013, http://whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf.
[2]  J. M. Al-Quaiz, “Iron deficiency anemia: a study of risk factors,” Saudi Medical Journal, vol. 22, no. 6, pp. 490–496, 2001.
[3]  World Health Organization, “Iron Deficiency anemia. Assessment, prevention and control. A guide for program managers,” 2012, http://whqlibdoc.who.int/hq/2001/WHO_NHD_01.3.pdf.
[4]  WHO and UNICEF, “Guidelines for the control of iron deficiency in countries of the Eastern Mediterranean, Middle East, and North Africa,” Report of a Joint WHO/UNICEF Consultation EM/NUT/177, E/G/11. 96, WHO, Tehran, Iran, 1995.
[5]  R. E. Black, L. H. Allen, Z. A. Bhutta et al., “Maternal and child undernutrition: global and regional exposures and health consequences,” The Lancet, vol. 371, no. 9608, pp. 243–260, 2008.
[6]  X. Xiong, P. Buekens, S. Alexander, N. Demianczuk, and E. Wollast, “Anemia during pregnancy and birth outcome: a meta-analysis,” American Journal of Perinatology, vol. 17, no. 3, pp. 137–146, 2000.
[7]  A. Lartey, “Maternal and child nutrition in Sub-Saharan Africa: challenges and interventions,” Proceedings of the Nutrition Society, vol. 67, no. 1, pp. 105–108, 2008.
[8]  L. H. Allen, “Biological mechanisms that might underlie iron's effects on fetal growth and preterm birth,” Journal of Nutrition, vol. 131, no. 2, pp. 581–589, 2001.
[9]  Q. Zhang, C. V. Ananth, G. G. Rhoads, and Z. Li, “The impact of maternal Anemia on perinatal mortality: a population-based, prospective cohort study in China,” Annals of Epidemiology, vol. 19, no. 11, pp. 793–799, 2009.
[10]  B. J. Brabin, Z. Premji, and F. Verhoeff, “An analysis of anemia and child mortality,” Journal of Nutrition, vol. 131, no. 2, pp. 636–645, 2001.
[11]  R. J. Stoltzfus, L. C. Mullany, and R. E. Black, Iron Deficiency Anemia, Comparative Quantification of Health Risks, World Health Organization, Geneva, Switzerland, 2004.
[12]  T. O. Scholl, “Iron status during pregnancy: setting the stage for mother and infant,” American Journal of Clinical Nutrition, vol. 81, no. 5, pp. 1218–1222, 2005.
[13]  S. Killip, J. M. Bennett, and M. D. Chambers, “Iron deficiency anemia,” American Family Physician, vol. 75, no. 5, pp. 671–678, 2007.
[14]  F. A. Sayes, M. Gari, S. Qusti, N. Bagatian, and A. Abuzenadah, “Prevalence of iron deficiency and iron deficiency anemia among females at university stage,” Journal of Medical Laboratory and Diagnosis, vol. 2, no. 1, pp. 5–11, 2011.
[15]  S. S. Elzahrani, “Prevalence of Iron deficiency anemia among pregnant women attending antenatal clinics at Al-Hada hospital,” Canadian Journal on Medicine, vol. 3, no. 1, pp. 10–14, 2012.
[16]  A. A. Mahfouz, M. M. el-Said, W. Alakija, I. A. Badawi, R. A. al-Erian, and M. A. Moneim, “Anemia among pregnant women in the Asir region, Saudi Arabia: an epidemiologic study,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 25, no. 1, pp. 84–87, 1994.
[17]  A. Verster and J. Pols, “Anaemia in the mediterranean region,” Eastern Mediterranean Health Journal, vol. 1, pp. 64–79, 1995.
[18]  J. M. Alquaiz, H. M. Abdulghani, R. A. Khawaja, and S. Shaffi-Ahamed, “Accuracy of various iron parameters inthe prediction of iron deficiency anemia among healthy women of childBearing age, Saudi Arabia,” Iranian Red Crescent Medical Journal, vol. 14, no. 7, pp. 397–401, 2012.
[19]  A. M. Heath, C. Murray Skeaff, S. Williams, and R. S. Gibson, “The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women,” Public Health Nutrition, vol. 4, no. 2, pp. 197–206, 2001.
[20]  C. Geissler and M. Singh, “Iron, meat and health,” Nutrients, vol. 3, no. 3, pp. 283–316, 2011.
[21]  A. Bhargava, H. E. Bouis, and N. S. Scrimshaw, “Dietary intakes and socioeconomic factors are associated with the hemoglobin concentration of Bangladeshi women,” Journal of Nutrition, vol. 131, no. 3, pp. 758–764, 2001.
[22]  M. E. Cogswell, I. Parvanta, L. Ickes, R. Yip, and G. M. Brittenham, “Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial,” American Journal of Clinical Nutrition, vol. 78, no. 4, pp. 773–781, 2003.
[23]  N. Hovdenak and K. Haram, “Influence of mineral and vitamin supplements on pregnancy outcome,” European Journal of Obstetric Gynecology Reproductive Biology, vol. 164, no. 2, pp. 127–132, 2012.
[24]  S. Vandevijvere, S. Amsalkhir, H. V. Oyen, E. Ines, and R. Moreno-Reyes, “Iron status and its determinants in a nationally representative sample of pregnant women,” Journal of the Academy of Nutrition and Dietetics, vol. 113, no. 5, pp. 659–666, 2013.
[25]  J. P. Pe?a-Rosas, L. M. De-Regil, T. Dowswell, and F. E. Viteri, “Daily oral iron supplementation during pregnancy,” Cochrane Database of Systematic Reviews, vol. 12, no. 12, Article ID CD004736, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413