全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Single Consumption of High Amounts of the Brazil Nuts Improves Lipid Profile of Healthy Volunteers

DOI: 10.1155/2013/653185

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. This study investigates the effects of Brazil nut ingestion on serum lipid profile in healthy volunteers. Methods. Ten healthy subjects were enrolled in the study. Each subject was tested 4 times in a randomized crossover in relation to the ingestion of different serving sizes of the Brazil nut: 0, 5, 20, or 50?g. At each treatment point, peripheral blood was drawn before and at 1, 3, 6, 9, 24, and 48 hours and 5 and 30 days. Blood samples were tested for total cholesterol, high- and low-density lipoprotein cholesterol (HDL-c and LDL-c, resp.), triglycerides, selenium, aspartate and alanine aminotransferases, albumin, total protein, alkaline phosphatase, gamma GT, urea, creatinine, and C-reactive protein. Results. A significant increase of the plasma selenium levels was observed at 6 hours within the groups receiving the nuts. Serum LDL-c was significantly lower, whereas HDL-c was significantly higher 9 hours after the ingestion of 20 or 50?g of nuts. The biochemical parameters of liver and kidney function were not modified by ingestion of nuts. Conclusions. This study shows that the ingestion of a single serving of Brazil nut can acutely improve the serum lipid profile of healthy volunteers. 1. Background Selenium is an essential nutrient for human health [1], and its biological functions are mediated by the expression of about 20 selenoproteins which have selenocysteine at their active centers [2–4]. Some selenoproteins, for example, glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), are important antioxidant enzymes [3, 5–7]. However, high acute selenium ingestion can be toxic to mammals, and epidemiological observations have suggested that dietary overexposure to selenium increases the prevalence of chronic degenerative diseases such as type 2 diabetes, a myotrophic lateral sclerosis, and neoplasias [3, 8, 9]. Selenoproteins can promote cardiovascular benefits possibly via their antioxidant properties. Some isoforms of GPx are known for being able to prevent the oxidative modification of lipids (including those found in lipoproteins), inhibit platelet aggregation, and modulate inflammation by reducing the peroxide tonus [1, 3, 10–12]. Additionally, some animals as well as epidemiological studies in humans have identified a putative protective role of some GPx isoforms against cardiovascular damage [1, 13, 14]. However, some large randomized trials investigating the effects of the administration of selenium containing supplements have failed to show a significant protective effect on cardiovascular disease and mortality

References

[1]  M. P. Rayman, H. G. Infante, and M. Sargent, “Food-chain selenium and human health: spotlight on speciation,” British Journal of Nutrition, vol. 100, no. 2, pp. 238–253, 2008.
[2]  G. V. Kryukov, S. Castellano, S. V. Novoselov et al., “Characterization of mammalian selenoproteomes,” Science, vol. 300, no. 5624, pp. 1439–1443, 2003.
[3]  C. W. Nogueira and J. B. T. Rocha, “Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds,” Archives of Toxicology, vol. 85, no. 11, pp. 1313–1359, 2011.
[4]  B. A. Carlson, M.-H. Yoo, P. A. Tsuji, V. N. Gladyshev, and D. L. Hatfield, “Mouse models targeting selenocysteine tRNA expression for elucidating the role of selenoproteins in health and development,” Molecules, vol. 14, no. 9, pp. 3509–3527, 2009.
[5]  R. F. Burk and K. E. Hill, “Regulation of selenoproteins,” Annual Review of Nutrition, vol. 13, pp. 65–81, 1993.
[6]  R. F. Burk, K. E. Hill, and A. K. Motley, “Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P,” Journal of Nutrition, vol. 133, no. 5, pp. 1517S–1520S, 2003.
[7]  M. P. Rayman, “Selenium and human health,” The Lancet, vol. 379, no. 9822, pp. 1256–1268, 2012.
[8]  M. Vinceti, T. Maraldi, M. Bergomi, and C. Malagoli, “Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry,” Reviews on Environmental Health, vol. 24, no. 3, pp. 231–248, 2009.
[9]  M. Vinceti, F. Bonvicini, K. J. Rothman, L. Vescovi, and F. Wang, “The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study,” Environmental Health, vol. 9, no. 1, pp. 77–84, 2010.
[10]  H. Tapiero, D. M. Townsend, and K. D. Tew, “The antioxidant role of selenium and seleno-compounds,” Biomedicine and Pharmacotherapy, vol. 57, no. 3, pp. 134–144, 2003.
[11]  A. F. D. Bem, M. Farina, R. D. L. Portella et al., “Diphenyl diselenide, a simple glutathione peroxidase mimetic, inhibits human LDL oxidation in vitro,” Atherosclerosis, vol. 201, no. 1, pp. 92–100, 2008.
[12]  S. Blankenberg, H. J. Rupprecht, C. Bickel et al., “Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease,” The New England Journal of Medicine, vol. 349, no. 17, pp. 1605–1613, 2003.
[13]  M. Torzewski, V. Ochsenhirt, A. L. Kleschyov et al., “Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 850–857, 2007.
[14]  G. Flores-Mateo, A. Navas-Acien, R. Pastor-Barriuso, and E. Guallar, “Selenium and coronary heart disease: a meta-analysis,” American Journal of Clinical Nutrition, vol. 84, no. 4, pp. 762–773, 2006.
[15]  S. Stranges, J. R. Marshall, M. Trevisan et al., “Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial,” American Journal of Epidemiology, vol. 163, no. 8, pp. 694–699, 2006.
[16]  S. M. Lippman, E. A. Klein, P. J. Goodman et al., “Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT),” The Journal of the American Medical Association, vol. 301, no. 1, pp. 39–51, 2009.
[17]  J.-P. Després, I. Lemieux, G.-R. Dagenais, B. Cantin, and B. Lamarche, “HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study,” Atherosclerosis, vol. 153, no. 2, pp. 263–272, 2000.
[18]  Y. Miyazaki, H. Koyama, M. Nojiri, and S. Suzuki, “Relationship of dietary intake of fish and non-fish selenium to serum lipids in Japanese rural coastal community,” Journal of Trace Elements in Medicine and Biology, vol. 16, no. 2, pp. 83–90, 2002.
[19]  K. Hughes and C.-N. Ong, “Vitamins, selenium, iron, and coronary heart disease risk in Indians, Malays, and Chinese in Singapore,” Journal of Epidemiology and Community Health, vol. 52, no. 3, pp. 181–185, 1998.
[20]  O. Lee, J. Moon, and Y. Chung, “The relationship between serum selenium levels and lipid profiles in adult women,” Journal of Nutritional Science and Vitaminology, vol. 49, no. 6, pp. 397–404, 2003.
[21]  A. P. Vonderheide, K. Wrobel, S. S. Kannamkumarath et al., “Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS,” Journal of Agricultural and Food Chemistry, vol. 50, no. 20, pp. 5722–5728, 2002.
[22]  E. Dumont, L. de Pauw, F. Vanhaecke, and R. Cornelis, “Speciation of Se in Bertholletia excelsa (Brazil nut): a hard nut to crack?” Food Chemistry, vol. 95, no. 4, pp. 684–692, 2006.
[23]  J. C. Chang, W. B. Gutemann, C. M. Reid, and D. J. Lisk, “Selenium content of brazil nuts from two geographic locations in Brazil,” Chemosphere, vol. 30, no. 4, pp. 801–802, 1995.
[24]  S. S. Kannamkumarath, K. Wrobel, K. Wrobel, A. Vonderheide, and J. A. Caruso, “HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut,” Analytical and Bioanalytical Chemistry, vol. 373, no. 6, pp. 454–460, 2002.
[25]  E. Bodó, Z. Stefánka, I. Ipolyi, C. S?r?s, M. Dernovics, and P. Fodor, “Preparation, homogeneity and stability studies of a candidate LRM for Se speciation,” Analytical and Bioanalytical Chemistry, vol. 377, no. 1, pp. 32–38, 2003.
[26]  J. Yang, “Brazil nuts and associated health benefits: a review,” LWT—Food Science and Technology, vol. 42, no. 10, pp. 1573–1580, 2009.
[27]  M. A. Forgione, A. Cap, R. Liao et al., “Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure,” Circulation, vol. 106, no. 9, pp. 1154–1158, 2002.
[28]  J. H. Kelly Jr. and J. Sabaté, “Nuts and coronary heart disease: an epidemiological perspective,” The British Journal of Nutrition, vol. 96, pp. S61–S67, 2006.
[29]  F. McKiernan, P. Lokko, A. Kuevi et al., “Effects of peanut processing on body weight and fasting plasma lipids,” British Journal of Nutrition, vol. 104, no. 3, pp. 418–426, 2010.
[30]  M. Bes-Rastrollo, N. M. Wedick, M. A. Martinez-Gonzalez, T. Y. Li, L. Sampson, and F. B. Hu, “Prospective study of nut consumption, long-term weight change, and obesity risk in women,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1913–1919, 2009.
[31]  J. Sabaté, G. E. Fraser, K. Burke, S. F. Knutsen, H. Bennett, and K. D. Lindsted, “Effects of walnuts on serum lipid levels and blood pressure in normal men,” The New England Journal of Medicine, vol. 328, no. 9, pp. 603–607, 1993.
[32]  F. B. Hu, M. J. Stampfer, J. E. Manson et al., “Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study,” British Medical Journal, vol. 317, no. 7169, pp. 1341–1345, 1998.
[33]  J. Sabaté and G. E. Fraser, “Nuts: a new protective food against coronary heart disease,” Current Opinion in Lipidology, vol. 5, no. 1, pp. 11–16, 1994.
[34]  A. Chisholm, K. Mc Auley, J. Mann, S. Williams, and M. Skeaff, “Cholesterol lowering effects of nuts compared with a Canola oil enriched cereal of similar fat composition,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 15, no. 4, pp. 284–292, 2005.
[35]  J. Sabaté, K. Oda, and E. Ros, “Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials,” Archives of Internal Medicine, vol. 170, no. 9, pp. 821–827, 2010.
[36]  C. Cominetti, M. C. de Bortoli, A. B. Garrido Jr., and S. M. Cozzolino, “Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women,” Nutrition Research, vol. 32, no. 6, pp. 403–407, 2012.
[37]  C. C. Strunz, T. V. Oliveira, J. C. M. Vinagre, A. Lima, S. Cozzolino, and R. C. Maranh?o, “Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects,” Nutrition Research, vol. 28, no. 3, pp. 151–155, 2008.
[38]  E. Ros and J. Mataix, “Fatty acid composition of nuts—implications for cardiovascular health,” The British Journal of Nutrition, vol. 96, pp. S29–S35, 2006.
[39]  W. C. Willett, F. Sacks, A. Trichopoulou et al., “Mediterranean diet pyramid: a cultural model for healthy eating,” American Journal of Clinical Nutrition, vol. 61, no. 6, pp. 1402S–1406S, 1995.
[40]  P. A. Maranh?o, L. G. Kraemer-Aguiar, C. L. de Oliveira et al., “Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial,” Nutrition and Metabolism, vol. 8, pp. 32–40, 2011.
[41]  WHO, Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation, WHO Technical Report Series, no. 894, WHO, Geneva, Switzerland, 2000.
[42]  USDA National nutrient database for standard reference, 2006, http://www.nal.usda.gov/fnic/foodcomp/search/.
[43]  E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959.
[44]  W. W. Christie, “A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters,” Journal of Lipid Research, vol. 23, no. 7, pp. 1072–1075, 1982.
[45]  J. V. Visentainer, “Aspectos analíticos da resposta do detector de ioniza??o em chama para ésteres de ácidos graxos em biodiesel e alimentos,” Química Nova, vol. 35, no. 2, pp. 274–279, 2012.
[46]  W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972.
[47]  B. Kinosian, H. Glick, and G. Garland, “Cholesterol and coronary heart disease: predicting risk by levels and ratios,” Annals of Internal Medicine, vol. 121, no. 9, pp. 641–647, 1994.
[48]  I. Lemieux, B. Lamarche, C. Couillard et al., “Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men,” Archives of Internal Medicine, vol. 161, no. 22, pp. 2685–2692, 2001.
[49]  C. Ip and D. J. Lisk, “Bioactivity of selenium from Brazil nut for cancer prevention and selenoenzyme maintenance,” Nutrition and Cancer, vol. 21, no. 3, pp. 203–212, 1994.
[50]  C. D. Thomson, A. Chisholm, S. K. McLachlan, and J. M. Campbell, “Brazil nuts: an effective way to improve selenium status,” American Journal of Clinical Nutrition, vol. 87, no. 2, pp. 379–384, 2008.
[51]  US Department of Agriculture, Agricultural Research Service, Nutrient Database for Standard Reference—Release 15, 2001.
[52]  J. Mukuddem-Petersen, W. Oosihuizen, and J. C. Jerling, “A systematic review of the effects of nuts on lipid profiles in humans,” Journal of Nutrition, vol. 135, no. 9, pp. 2082–2089, 2005.
[53]  G. Riccardi, A. A. Rivellese, and C. M. Williams, “The cardiovascular system,” in Nutrition and Metabolism, M. J. Gibney, I. A. Macdonald, and H. M. Roche, Eds., pp. 224–246, Blackwell Science, Oxford, UK, 2003.
[54]  R. P. Mensink, P. L. Zock, A. D. M. Kester, and M. B. Katan, “Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials,” American Journal of Clinical Nutrition, vol. 77, no. 5, pp. 1146–1155, 2003.
[55]  A. E. Griel and P. M. Kris-Etherton, “Tree nuts and the lipid profile: a review of clinical studies,” The British Journal of Nutrition, vol. 96, pp. S68–S78, 2006.
[56]  C. E. O'Neil, D. R. Keast, V. L. Fulgoni, and T. A. Nicklas, “Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999–2004,” Asia Pacific Journal of Clinical Nutrition, vol. 19, no. 1, pp. 142–150, 2010.
[57]  M. B. Stockler-Pinto, J. Lobo, C. Moraes et al., “Effect of Brazil nut supplementation on plasma levels of selenium in hemodialysis patients: 12 months of follow-up,” Journal of Renal Nutrition, vol. 22, pp. 434–439, 2012.
[58]  C. M. Alper and R. D. Mattes, “Peanut consumption improves indices of cardiovascular disease risk in healthy adults,” Journal of the American College of Nutrition, vol. 22, no. 2, pp. 133–141, 2003.
[59]  M. J. Sheridan, J. N. Cooper, M. Erario, and C. E. Cheifetz, “Pistachio nut consumption and serum lipid levels,” Journal of the American College of Nutrition, vol. 26, no. 2, pp. 141–148, 2007.
[60]  S. Stranges, M. Laclaustra, C. Ji et al., “Higher selenium status is associated with adverse blood lipid profile in British adults,” Journal of Nutrition, vol. 140, no. 1, pp. 81–87, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133