Background. We conducted a comparative effectiveness analysis to evaluate the difference in the amount of physical activity children engaged in when enrolled in a physical activity-enhanced after-school program based in a community recreation center versus a standard school-based after-school program. Methods. The study was a natural experiment with 54 elementary school children attending the community ASP and 37 attending the school-based ASP. Accelerometry was used to measure physical activity. Data were collected at baseline, 6 weeks, and 12 weeks, with 91% retention. Results. At baseline, 43% of the multiethnic sample was overweight/obese, and the mean age was 7.9 years (SD = 1.7). Linear latent growth models suggested that the average difference between the two groups of children at Week 12 was 14.7 percentage points in moderate-vigorous physical activity ( ). Cost analysis suggested that children attending traditional school-based ASPs—at an average cost of $17.67 per day—would need an additional daily investment of $1.59 per child for 12 weeks to increase their moderate-vigorous physical activity by a model-implied 14.7 percentage points. Conclusions. A low-cost, alternative after-school program featuring adult-led physical activities in a community recreation center was associated with increased physical activity compared to standard-of-care school-based after-school program. 1. Introduction Childhood obesity remains one of the most serious threats to the public’s health, with 1 in 3 children and adolescents overweight or obese (body mass index (BMI) ≥ 85th percentile) [1]. Childhood obesity is particularly problematic because it is resistant to treatment once established [2]. Accordingly, public health authorities are focusing on prevention. There is limited evidence for effective behavioral prevention interventions [3]. To fill this gap, the Institute of Medicine [4], the Strategic Plan for NIH Obesity Research [5], Shaping America’s Youth [6], and the White House Task Force on Childhood Obesity [7] have called for community-engaged, family-centered approaches to pediatric obesity prevention. These approaches are thought to have the greatest potential for sustained efforts and effects in our obesogenic environment. In parallel, comparative effectiveness research is being discussed within the national health reform debate as a mechanism for improving healthcare quality and decreasing healthcare spending [8]. Clinical research typically examines the effectiveness of one prevention or treatment method at a time. Comparative effectiveness research
References
[1]
K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010.
[2]
D. Canoy and P. Bundred, “Obesity in children,” Clinical Evidence (Online), vol. 2011, 2011.
[3]
S. L. Gortmaker, B. A. Swinburn, D. Levy et al., “Changing the future of obesity: science, policy, and action,” The Lancet, vol. 378, no. 9793, pp. 838–847, 2011.
[4]
Institute of Medicine, Committee on Progress in Preventing Childhood Obesity: Progress in Preventing Childhood Obesity: How Do We Measure Up, Edited by Obesity CoPiPC, The National Academies Press, 2006.
[5]
U.S. Department of Health and Human Services, Strategic Plan for NIH Obesity Research: A Report of the NIH Obesity Research Task Force, National Institutes of Health, Rockville, Md, USA, 2004.
[6]
D. A. McCarron, N. Richartz, S. Brigham, M. K. White, S. P. Klein, and S. S. Kessel, “Community-based priorities for improving nutrition and physical activity in childhood,” Pediatrics, vol. 126, supplement 2, pp. S73–S89, 2010.
[7]
Let's Move: America's Move to Raise a Healthier Generation of Kids, http://www.letsmove.gov/.
[8]
US Department of Health and Human Services, Federal Coordinating Council for Comparative Effectiveness Research: Report to the President and the Congress, 2009.
[9]
America After 3PM: The most in-depth study of how America's children spend their afternoons, http://www.afterschoolalliance.org/AA3_Full_Report.pdf.
[10]
M. W. Beets, A. Beighle, H. E. Erwin, and J. L. Huberty, “After-school program impact on physical activity and fitness: a meta-analysis,” American Journal of Preventive Medicine, vol. 36, no. 6, pp. 527–537, 2009.
[11]
A. J. Atkin, T. Gorely, S. J. H. Biddle, N. Cavill, and C. Foster, “Interventions to promote physical activity in young people conducted in the hours immediately after school: a systematic review,” International Journal of Behavioral Medicine, vol. 18, no. 3, pp. 176–187, 2011.
[12]
M. W. Leung, I. H. Yen, and M. Minkler, “Community-based participatory research: a promising approach for increasing epidemiology's relevance in the 21st century,” International Journal of Epidemiology, vol. 33, no. 3, pp. 499–506, 2004.
[13]
C. D. Summerbell, E. Waters, L. D. Edmunds, S. Kelly, T. Brown, and K. J. Campbell, “Interventions for preventing obesity in children,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD001871, 2005.
[14]
M. R. Puyau, A. L. Adolph, F. A. Vohra, and N. F. Butte, “Validation and calibration of physical activity monitors in children,” Obesity Research, vol. 10, no. 3, pp. 150–157, 2002.
[15]
S. I. de Vries, I. Bakker, M. Hopman-Rock, R. A. Hirasing, and W. van Mechelen, “Clinimetric review of motion sensors in children and adolescents,” Journal of Clinical Epidemiology, vol. 59, no. 7, pp. 670–680, 2006.
[16]
C. Mattocks, S. Leary, A. Ness et al., “Calibration of an accelerometer during free-living activities in children,” International Journal of Pediatric Obesity, vol. 2, no. 4, pp. 218–226, 2007.
[17]
M. R. Puyau, A. L. Adolph, F. A. Vohra, I. Zakeri, and N. F. Butte, “Prediction of activity energy expenditure using accelerometers in children,” Medicine and Science in Sports and Exercise, vol. 36, no. 9, pp. 1625–1631, 2004.
[18]
M. S. Treuth, N. E. Sherwood, T. Baranowski et al., “Physical activity self-report and accelerometry measures from the Girls health Enrichment Multi-site studies,” Preventive Medicine, vol. 38, pp. S43–S49, 2004.
[19]
M. W. Beets, L. Rooney, F. Tilley, A. Beighle, and C. Webster, “Evaluation of policies to promote physical activity in afterschool programs: are we meeting current benchmarks?” Preventive Medicine, vol. 51, no. 3-4, pp. 299–301, 2010.
[20]
P. Freedson, D. Pober, and K. F. Janz, “Calibration of accelerometer output for children,” Medicine and Science in Sports and Exercise, vol. 37, no. 11, supplement, pp. S523–S530, 2005.
[21]
S. G. Trost, P. D. Loprinzi, R. Moore, and K. A. Pfeiffer, “Comparison of accelerometer cut points for predicting activity intensity in youth,” Medicine and Science in Sports and Exercise, vol. 43, no. 7, pp. 1360–1368, 2011.
[22]
R. R. Pate, M. J. Almeida, K. L. McIver, K. A. Pfeiffer, and M. Dowda, “Validation and calibration of an accelerometer in preschool children,” Obesity, vol. 14, no. 11, pp. 2000–2006, 2006.
[23]
BMI Calculator for Child and Teen: English Version, http://apps.nccd.cdc.gov/dnpabmi/Calculator.aspx.
[24]
Quantum II & Quantum X Bioelectrical Impedance Analyzers, http://www.rjlsystems.com/pdf-files/quantum_iix_manual.pdf.
[25]
J. Castro-Pi?ero, F. B. Ortega, J. Mora, M. Sj?str?m, and J. R. Ruiz, “Criterion related validity of 1/2 mile run-walk test for estimating vO2peak in children aged 6–17 years,” International Journal of Sports Medicine, vol. 30, no. 5, pp. 366–371, 2009.
[26]
Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, no. 1, pp. 289–300, 1995.
[27]
L. K. Muthén and B. O. Muthén, Mplus User's Guide, vol. 6, Muthén & Muthén, Los Angeles, Calif, USA, 2011.
[28]
C. Nich and K. Carroll, “Now you see it, now you don't: a comparison of traditional versus random-effects regression models in the analysis of longitudinal follow-up data from a clinical trial,” Journal of Consulting and Clinical Psychology, vol. 65, no. 2, pp. 252–261, 1997.
[29]
E. W. Lambert, A. Doucette, and L. Bickman, “Measuring mental health outcomes with pre-post designs,” Journal of Behavioral Health Services and Research, vol. 28, no. 3, pp. 273–286, 2001.
[30]
H. M. Levin and P. J. McEwan, Cost-Effectiveness Analysis, Sage, Thousand Oaks, Calif, USA, 2nd edition, 2001.
[31]
National Occupational Employment and Wage Estimates United States, http://www.bls.gov/oes/current/oes_nat.htm#00-0000.
[32]
Afterschool Alliance, The Afterschool Hours in America, Afterschool Alliance, Washington, DC, USA.
[33]
K. F. Janz, S. Kwon, E. M. Letuchy et al., “Sustained effect of early physical activity on body fat mass in older children,” American Journal of Preventive Medicine, vol. 37, no. 1, pp. 35–40, 2009.
[34]
K. F. Janz, E. M. Letuchy, J. M. Eichenberger Gilmore et al., “Early physical activity provides sustained bone health benefits later in childhood,” Medicine and Science in Sports and Exercise, vol. 42, no. 6, pp. 1072–1078, 2010.
[35]
T. Tanha, P. Wollmer, O. Thorsson et al., “Lack of physical activity in young children is related to higher composite risk factor score for cardiovascular disease,” Acta Paediatrica, vol. 100, no. 5, pp. 717–721, 2011.
[36]
J. Cawley, “The economics of childhood obesity,” Health Affairs, vol. 29, no. 3, pp. 364–371, 2010.
[37]
Afterschool Alliance, Evaluations Backgrounder: A Summary of Formal Evaluations of Afterschool Programs' Impact on Academics, Behavior, Safety and Family Life, Project HFR, 2011.
[38]
J. S. Moody, J. J. Prochaska, J. F. Sallis, T. L. McKenzie, M. Brown, and T. L. Conway, “Viability of parks and recreation centers as sites for youth physical activity promotion,” Health promotion practice, vol. 5, no. 4, pp. 438–443, 2004.
[39]
B. R. Belcher, D. Berrigan, K. W. Dodd, B. A. Emken, C.-P. Chou, and D. Spruijt-Metz, “Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status,” Medicine and Science in Sports and Exercise, vol. 42, no. 12, pp. 2211–2221, 2010.