全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vagal Blocking Improves Glycemic Control and Elevated Blood Pressure in Obese Subjects with Type 2 Diabetes Mellitus

DOI: 10.1155/2013/245683

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. An active device that downregulates abdominal vagal signalling has resulted in significant weight loss in feasibility studies. Objective. To prospectively evaluate the effect of intermittent vagal blocking (VBLOC) on weight loss, glycemic control, and blood pressure (BP) in obese subjects with DM2. Methods. Twenty-eight subjects were implanted with a VBLOC device (Maestro Rechargeable System) at 5 centers in an open-label study. Effects on weight loss, HbA1c, fasting blood glucose, and BP were evaluated at 1 week to 12 months. Results. 26 subjects (17 females/9 males, years, BMI ?kg/m2, mean?±?SEM) completed 12 months followup. One serious adverse event (pain at implant site) was easily resolved. At 1 week and 12 months, mean excess weight loss percentages (% EWL) were % and % ( ), and HbA1c declined by % and % ( , baseline %). In DM2 subjects with elevated BP ( ), mean arterial pressure reduced by ?mmHg and ?mmHg ( , baseline ?mmHg) at 1 week and 12 months. All subjects MAP decreased by ?mmHg (baseline ?mmHg) at 12 months. Conclusions. VBLOC was safe in obese DM2 subjects and associated with meaningful weight loss, early and sustained improvements in HbA1c, and reductions in BP in hypertensive DM2 subjects. This trial is registered with ClinicalTrials.gov NCT00555958. 1. Introduction It has been estimated that approximately 20 million adults in the USA have type 2 diabetes mellitus [1]. Worldwide, the incidence of type 2 diabetes mellitus is now thought to be over 347 million [2]. In the USA alone, it is estimated that it will cost 147 billion dollars to take care of diabetes and its complications [1]. The majority of these individuals are obese. Obesity and type 2 diabetes mellitus (DM2) are closely linked [3]—as body mass index (BMI) increases, there is a weight-dependent increased risk of developing type 2 diabetes [4]. Body weight reduction of just 5% can improve glycemic control in obese type 2 diabetics [5]. Current medical treatments are limited by many factors including subject’s compliance and high costs as well as by the inexorable progression of the disease and its complications. Current bariatric surgical procedures such as gastric bypass, biliopancreatic diversion or sleeve gastrectomy have demonstrated a significant beneficial impact on the glucose control even before significant weight loss occurs [6, 7]. However these procedures are invasive with the potential for serious complications and considerable professional and patient aversion. Given the severity of the problem, there is a societal need for a less invasive,

References

[1]  S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.
[2]  G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011.
[3]  C. A. Maggio and F. X. Pi-Sunyer, “The prevention and treatment of obesity: application to type 2 diabetes,” Diabetes Care, vol. 20, no. 11, pp. 1744–1766, 1997.
[4]  A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, “The disease burden associated with overweight and obesity,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1523–1529, 1999.
[5]  K. Fujioka, “Benefits of moderate weight loss in patients with type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 12, no. 3, pp. 186–194, 2010.
[6]  G. Mingrone, S. Panunzi, A. De Gaetano, C. Guidone, A. Iaconelli, L. Leccesi, et al., “Bariatric surgery versus conventional medical therapy for type 2 diabetes,” The New England Journal of Medicine, vol. 366, pp. 1577–1585, 2012.
[7]  P. R. Schauer, S. R. Kashyap, K. Wolski, S. A. Brethauer, J. P. Kirwan, C. E. Pothier, et al., “Bariatric surgery versus intensive medical therapy in obese patients with diabetes,” The New England Journal of Medicine, vol. 366, pp. 1567–1576, 2012.
[8]  A. C. Guyton and J. E. Hall, Textbook of Medical Physiology, W.B. Saunders Company, St. Louis, Mo, USA, 10th edition, 2000.
[9]  J. V. Pardo, S. A. Sheikh, G. C. Schwindt et al., “Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism,” NeuroImage, vol. 42, no. 2, pp. 879–889, 2008.
[10]  J. G. Kral, W. Paez, and B. M. Wolfe, “Vagal nerve function in obesity: therapeutic implications,” World Journal of Surgery, vol. 33, no. 10, pp. 1995–2006, 2009.
[11]  M. Camilleri, J. Toouli, M. F. Herrera, L. Kow, J. P. Pantoja, C. J. Billington, et al., “Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device,” Surgery for Obesity and Related Diseases, vol. 5, pp. 224–230, 2009.
[12]  M. Camilleri, J. Toouli, M. F. Herrera et al., “Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device,” Surgery, vol. 143, no. 6, pp. 723–731, 2008.
[13]  K. S. Tweden, M. G. Sarr, M. D. Bierk, M. Camilleri, M. L. Kendrick, M. B. Knudson, et al., “Vagal blocking for obesity control (VBLOC): studies of pancreatic and gastric function and safety in a porcine model,” Surgery For Obesity and Related Diseases, vol. 2, no. 3, pp. 301–302, 2006.
[14]  M. F. Herrera, R. Brancatisano, U. Keller, B. Kulseng, J. Toouli, A. Brancatisano, et al., “Intermittent vagal blockade with an implantable device improves glycemic control in obese subjects with type 2 diabetes,” Surgery For Obesity and Related Diseases, vol. 5, Supplement, no. 3, pp. S48–S49, 2009.
[15]  M. F. Herrera, L. Kow, J. P. Pantoja, M. B. Knudson, K. S. Tweden, R. R. Wilson, et al., “VBLOC and improvements in co-morbidities in obese subjects during weight loss,” Obesity Surgery, vol. 19, pp. 983–984, 2009.
[16]  K. S. Tweden, M. Anvari, M. D. Bierk, C. J. Billington, M. Camilleri, C. N. Honda, et al., “Vagal blocking for obesity control (VBLOC): concordance of effects of very high frequency vagal blocking currents at the neural and organ levels using two pre-clinical models,” Gastroenterology, vol. 130, Supplement 2, p. 148, 2006.
[17]  T. G. Pickering, J. E. Hall, L. J. Appel et al., “Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans,” Circulation, vol. 111, no. 5, pp. 697–716, 2005.
[18]  “The seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC-7),” Publication no. 03-5233, National Institutes of Health (US), Bethesda, Md, USA, 2003.
[19]  G. A. Bray, C. Bouchard, T. S. Church et al., “Is it time to change the way we report and discuss weight loss?” Obesity, vol. 17, no. 4, pp. 619–621, 2009.
[20]  C. D. Fryar, M. D. Carroll, and C. L. Ogden, “Prevalence of overweight and obesity among adults: United States, trends 1960–1962 through 2009-2010 (Health E-Stat),” Hyattsville (MD): National Center for Health Statistics (US), 2012, http://www.cdc.gov/nchs/data/hestat/obese/obese99.htm.
[21]  H. B. Hubert, M. Feinleib, P. M. McNamara, and W. P. Castelli, “Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study,” Circulation, vol. 67, no. 5, pp. 968–977, 1983.
[22]  E. A. Lew and L. Garfinkel, “Variations in mortality by weight among 750,000 men and women,” Journal of Chronic Diseases, vol. 32, no. 8, pp. 563–576, 1979.
[23]  J. B. Dixon, P. E. O'Brien, J. Playfair et al., “Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial,” Journal of the American Medical Association, vol. 299, no. 3, pp. 316–323, 2008.
[24]  P. R. Schauer, B. Burguera, S. Ikramuddin et al., “Effect of laparoscopic Roux-En Y gastric bypass on type 2 diabetes mellitus,” Annals of Surgery, vol. 238, no. 4, pp. 467–485, 2003.
[25]  R. R. Wing, J. L. Bahnson, G. A. Bray et al., “Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the look AHEAD trial,” Archives of Internal Medicine, vol. 170, no. 17, pp. 1566–1575, 2010.
[26]  K. Fujioka, T. B. Seaton, E. Rowe et al., “Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus,” Diabetes, Obesity and Metabolism, vol. 2, no. 3, pp. 175–187, 2000.
[27]  K. A. Elder and B. M. Wolfe, “Bariatric surgery: a review of procedures and outcomes,” Gastroenterology, vol. 132, no. 6, pp. 2253–2271, 2007.
[28]  N. Scopinaro, F. Papadia, G. Camerini, G. Marinari, D. Civalleri, and A. G. Franco, “A comparison of a personal series of biliopancreatic diversion and literature data on gastric bypass help to explain the mechanisms of resolution of type 2 diabetes by the two operations,” Obesity Surgery, vol. 18, no. 8, pp. 1035–1038, 2008.
[29]  J. Korner, M. Bessler, W. Inabnet, C. Taveras, and J. J. Holst, “Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding,” Surgery for Obesity and Related Diseases, vol. 3, no. 6, pp. 597–601, 2007.
[30]  A. Patriti, E. Facchiano, A. Sanna, N. Gullà, and A. Donini, “The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery,” Obesity Surgery, vol. 14, no. 6, pp. 840–848, 2004.
[31]  M. Bose, B. Oliván, J. Teixeira, F. X. Pi-Sunyer, and B. Laferrère, “Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: what are the evidence?” Obesity Surgery, vol. 19, no. 2, pp. 217–229, 2009.
[32]  C. Bernal-Mizrachi, L. Xiaozhong, L. Yin et al., “An afferent vagal nerve pathway links hepatic PPARα activation to glucocorticoid-induced insulin resistance and hypertension,” Cell Metabolism, vol. 5, no. 2, pp. 91–102, 2007.
[33]  S. A. Shikora, R. Bergenstal, M. Bessler et al., “Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial,” Surgery for Obesity and Related Diseases, vol. 5, no. 1, pp. 31–37, 2009.
[34]  M. L. Dansinger, A. Tatsioni, J. B. Wong, M. Chung, and E. M. Balk, “Meta-analysis: the effect of dietary counseling for weight loss,” Annals of Internal Medicine, vol. 147, no. 1, pp. 41–50, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133