全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Endocrine and Metabolic Signaling in Retroperitoneal White Adipose Tissue Remodeling during Cold Acclimation

DOI: 10.1155/2013/937572

Full-Text   Cite this paper   Add to My Lib

Abstract:

The expression profiles of adiponectin, resistin, 5′-AMP-activated protein kinase α (AMPKα), hypoxia-inducible factor-1α (HIF-1α), and key enzymes of glucose and fatty acid metabolism and oxidative phosphorylation in rat retroperitoneal white adipose tissue (RpWAT) during 45-day cold acclimation were examined. After transient suppression on day 1, adiponectin protein level increased following sustained cold exposure. In parallel, on day 1, the protein level of HIF-1α was strongly induced and AMPKα suppressed, while afterwards the reverse was seen. What is more, after an initial decrease on day 1, a sequential increase in pyruvate dehydrogenase, acyl-CoA dehydrogenase, cytochrome c oxidase, and ATP synthase and a decrease in acetyl-CoA carboxylase (from day 3) were observed. Similar to adiponectin, protein level of resistin showed a biphasic profile: it increased after days 1, 3, and 7 and decreased below the control after 21 days of cold-acclimation. In summary, the data suggest that adiponectin and resistin are important integrators of RpWAT metabolic response and roles it plays during cold acclimation. It seems that AMPKα mediate adiponectin effects on metabolic remodeling RpWAT during cold acclimation. 1. Introduction Acclimation to low temperature induces profound shifts in energy expenditure aimed at maintaining a stable body temperature [1]. Many aspects of adaptive metabolic changes in muscles, brown adipose tissue, and liver as the sites of thermoregulatory thermogenesis, that is, tissues with the highest oxygen consumption, have been the subject of considerable research [2–7]. By contrast, the data related to white adipose tissue (WAT) during cold acclimation are mainly focused on the metabolic pathways of the synthesis and breakdown of triglycerides, as ways of controlling fatty acids release, for example, availability for other tissues [8, 9], as well as on the morphological plasticity—the appearance of multilocular, brown fat-like cells [10, 11]. It is known that the response of white fat tissue in the conditions of increased whole body energy demands involves complex recruitment in WAT at the metabolic and endocrine levels. More recent developments in adipose tissue research have shown that WAT integrates metabolic signals and rapidly responds to changing environments by synthesizing endocrine factors adipokines. These factors initiate powerful feedback actions at the systemic level involved in the regulation of food intake and energy expenditure, that is, metabolic homeostasis. What is more, these factors exert local paracrine and

References

[1]  J. Himms-Hagen, “Lipid metabolism during cold-exposure and during cold-acclimation,” Lipids, vol. 7, no. 5, pp. 310–323, 1972.
[2]  P. E. Penner and J. Himms-Hagen, “Gluconeogenesis in rats during cold acclimation,” Canadian Journal of Biochemistry, vol. 46, no. 10, pp. 1205–1213, 1968.
[3]  L. J. Bukowiecki, “Regulation of energy expenditure in brown adipose tissue,” International Journal of Obesity, vol. 9, no. 2, pp. 31–41, 1985.
[4]  M. Shiota and S. Masumi, “Effect of norepinephrine on consumption of oxygen in perfused skeletal muscle from cold-exposed rats,” American Journal of Physiology, vol. 254, no. 4, part 1, pp. E482–E489, 1988.
[5]  S. Iossa, A. Barletta, and G. Liverini, “Different effects of cold exposure and cold acclimation on rat liver mitochondrial fatty acid oxidation and ketone bodies production,” International Journal of Biochemistry, vol. 26, no. 3, pp. 425–431, 1994.
[6]  A. A. Zaninovich, I. Rebagliati, M. Raíces, C. Ricci, and K. Hagmüller, “Mitochondrial respiration in muscle and liver from cold-acclimated hypothyroid rats,” Journal of Applied Physiology, vol. 95, pp. 1584–1590, 2003.
[7]  M. Vu?eti?, V. Ota?evi?, A. Kora?, et al., “Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: interplay of HIF-1α and AMPKα,” Biochimica et Biophysica Acta, vol. 1810, no. 12, pp. 1252–1261, 2011.
[8]  P. Trayhurn and M. Ashwell, “Control of white and brown adipose tissues by the autonomic nervous system,” Proceedings of the Nutrition Society, vol. 46, no. 1, pp. 135–142, 1987.
[9]  P. B. Jakus, A. Sandor, T. Janaky, and V. Farkas, “Cooperation between BAT and WAT of rats in thermogenesis in response to cold, and the mechanism of glycogen accumulation in BAT during reacclimation,” Journal of Lipid Research, vol. 49, no. 2, pp. 332–339, 2008.
[10]  S. Cinti, “The adipose organ,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 73, no. 1, pp. 9–15, 2005.
[11]  A. Smorlesi, A. Frontini, A. Giordano, and S. Cinti, “The adipose organ: white-brown adipocyte plasticity and metabolic inflammation,” Obesity Reviews, vol. 13, no. supplement 2, pp. 83–96, 2012.
[12]  P. Wang, E. Mariman, J. Renes, and J. Keijer, “The secretory function of adipocytes in the physiology of white adipose tissue,” Journal of Cellular Physiology, vol. 216, no. 1, pp. 3–13, 2008.
[13]  Q. Wang, C. Bing, K. Al-Barazanji et al., “Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat,” Diabetes, vol. 46, no. 3, pp. 335–341, 1997.
[14]  P. Trayhurn, J. S. Duncan, and D. V. Rayner, “Acute cold-induced suppression of ob (obese) gene expression in white adipose tissue of mice: mediation by the sympathetic system,” Biochemical Journal, vol. 311, no. 3, pp. 729–733, 1995.
[15]  C. Bing, H. M. Frankish, L. Pickavance et al., “Hyperphagia in cold-exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY,” American Journal of Physiology, vol. 274, no. 1, pp. R62–R68, 1998.
[16]  G. B. Tang, J. G. Cui, and D. H. Wang, “Role of hypoleptinemia during cold adaptation in Brandt's voles (Lasiopodomys brandtii),” American Journal of Physiology, vol. 297, no. 5, pp. R1293–R1301, 2009.
[17]  M. Puerta, M. Abelenda, M. Rocha, and P. Trayhurn, “Effect of acute cold exposure on the expression of the adiponectin, resistin and leptin genes in rat white and brown adipose tissues,” Hormone and Metabolic Research, vol. 34, no. 11-12, pp. 629–634, 2002.
[18]  M. A. Torsoni, J. B. Carvalheira, M. Pereira-Da-Silva, M. A. De Carvalho-Filho, M. J. A. Saad, and L. A. Velloso, “Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold,” American Journal of Physiology, vol. 285, no. 1, pp. E216–E223, 2003.
[19]  T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002.
[20]  X. Wu, H. Motoshima, K. Mahadev, T. J. Stalker, R. Scalia, and B. J. Goldstein, “Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes,” Diabetes, vol. 52, no. 6, pp. 1355–1363, 2003.
[21]  L. Qiao, B. Kinney, J. Schaack, and J. Shao, “Adiponectin inhibits lipolysis in mouse adipocytes,” Diabetes, vol. 60, no. 5, pp. 1519–1527, 2011.
[22]  M. Daval, F. Foufelle, and P. Ferré, “Functions of AMP-activated protein kinase in adipose tissue,” Journal of Physiology, vol. 574, no. 1, pp. 55–62, 2006.
[23]  M. Pravenec, L. Kazdová, M. Cahová, et al., “Fat-specific transgenic expression of resistin in the spontaneously hypertensive rat impairs fatty acid re-esterification,” International Journal of Obesity, vol. 30, pp. 1157–1159, 2006.
[24]  L. Rochon and L. J. Bukowiecki, “Alterations in adipocyte response to lipolytic hormones during cold acclimation,” American Journal of Physiology, vol. 258, no. 5, part 1, pp. C835–C840, 1990.
[25]  A. L. Vallerand, F. Perusse, and L. J. Bukowiecki, “Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues,” American Journal of Physiology, vol. 259, no. 5, pp. R1043–R1049, 1990.
[26]  E. Bobbioni-Harsch, F. Assimacopoulos-Jeannet, and B. Jeanrenaud, “Modifications of glucose and lipid metabolism in cold-acclimated lean and genetically obese rats,” Journal of Applied Physiology, vol. 76, no. 3, pp. 1106–1112, 1994.
[27]  N. Halberg, T. Khan, M. E. Trujillo et al., “Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue,” Molecular and Cellular Biology, vol. 29, no. 16, pp. 4467–4483, 2009.
[28]  B. Wang, I. S. Wood, and P. Trayhurn, “Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes,” Pflügers Archiv, vol. 455, no. 3, pp. 479–492, 2007.
[29]  C. T. Lim, B. Kola, and M. Korbonits, “AMPK as a mediator of hormonal signalling,” Journal of Molecular Endocrinology, vol. 44, no. 2, pp. 87–97, 2010.
[30]  Y. Takada, T. Noguchi, T. Okabe, et al., “Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus,” Cancer Research, vol. 42, no. 10, pp. 4233–4235, 1982.
[31]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[32]  U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[33]  N. Kubota, W. Yano, T. Kubota et al., “Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake,” Cell Metabolism, vol. 6, no. 1, pp. 55–68, 2007.
[34]  M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, and R. Paschke, “Adiponectin gene expression is inhibited by β-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes,” FEBS Letters, vol. 507, no. 2, pp. 142–146, 2001.
[35]  J. Imai, H. Katagiri, T. Yamada et al., “Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice,” Obesity, vol. 14, no. 7, pp. 1132–1141, 2006.
[36]  P. Imbeault, “Environmental influences on adiponectin levels in humans,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 3, pp. 505–511, 2007.
[37]  E. Tomas, T. S. Tsao, A. K. Saha et al., “Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16309–16313, 2002.
[38]  D. G. Hardie, “Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status,” Endocrinology, vol. 144, no. 12, pp. 5179–5183, 2003.
[39]  H. Sell, D. Dietze-Schroeder, K. Eckardt, and J. Eckel, “Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone,” Biochemical and Biophysical Research Communications, vol. 343, no. 3, pp. 700–706, 2006.
[40]  A. Jankovi?, B. Buzad?i?, A. Kora?, et al., “Antioxidative defense organization in retroperitoneal white adipose tissue during acclimation to cold—the involvement of l-arginine/NO pathway,” Journal of Thermal Biology, vol. 34, no. 7, pp. 358–365, 2009.
[41]  A. T. R. Sim and D. G. Hardie, “The low activity of acetyl-CoA carboxylase in basal and glucagon-stimulated hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-dependent protein kinase,” FEBS Letters, vol. 233, no. 2, pp. 294–298, 1988.
[42]  M. Fasshauer, R. Paschke, and M. Stumvoll, “Adiponectin, obesity, and cardiovascular disease,” Biochimie, vol. 86, no. 11, pp. 779–784, 2004.
[43]  P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998.
[44]  C. Tiraby and D. Langin, “Conversion from white to brown adipocytes: a strategy for the control of fat mass?” Trends in Endocrinology and Metabolism, vol. 14, no. 10, pp. 439–441, 2003.
[45]  M. Ghorbani and J. Himms-Hagen, “Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats,” International Journal of Obesity, vol. 21, no. 6, pp. 465–475, 1997.
[46]  S. Cinti, “Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ,” Journal of Endocrinological Investigation, vol. 25, no. 10, pp. 823–835, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133