全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

DOI: 10.1155/2013/393192

Full-Text   Cite this paper   Add to My Lib

Abstract:

The metabolic syndrome (MetS) confers an increased risk for both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT) in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin) and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin), as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD. 1. Introduction The metabolic syndrome (MetS) comprises a cluster of cardiometabolic risk markers with insulin resistance and adiposity as central features [1–4]. Five diagnostic criteria for MetS have been identified (central obesity, dyslipidemia (high triglycerides (TGs) and/or low high-density lipoprotein cholesterol (HDL-C)), hypertension, and impaired fasting glucose) by the Adult Treatment Panel III (ATPIII) criteria of the National Cholesterol and Education Program (NCEP), and the presence of three of these features is considered sufficient to diagnose the syndrome [2, 4, 5]. Using this definition, the National Health and Nutrition Examination Survey (NHANES) data show that currently ~35% of all US adults have MetS [6] and that >40% of adults over the age of 50 have the syndrome [7]. It is important to emphasize that the diagnosis of MetS has been harmonized using the NCEP ATPIII criteria with the exception of different cut-points for waist circumference for different races [8]. Furthermore, MetS confers an increased risk for cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) [7, 9–12], both of which are additional risk factors for increased

References

[1]  G. M. Reaven, “The insulin resistance syndrome: definition and dietary approaches to treatment,” Annual Review of Nutrition, vol. 25, pp. 391–406, 2005.
[2]  R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005.
[3]  S. M. Haffner and H. B. Cassells, “Metabolic syndrome—a new risk factor of coronary heart disease?” Diabetes, Obesity and Metabolism, vol. 5, no. 6, pp. 359–370, 2003.
[4]  M. A. Cornier, D. Dabelea, T. L. Hernandez et al., “The metabolic syndrome,” Endocrine Reviews, vol. 29, no. 7, pp. 777–822, 2008.
[5]  J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001.
[6]  A. Mozumdar and G. Liguori, “Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006,” Diabetes Care, vol. 34, no. 1, pp. 216–219, 2011.
[7]  C. M. Alexander, P. B. Landsman, S. M. Teutsch, and S. M. Haffner, “NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older,” Diabetes, vol. 52, no. 5, pp. 1210–1214, 2003.
[8]  K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009.
[9]  C. Schmidt and G. M. Bergstrom, “The metabolic syndrome predicts cardiovascular events: results of a 13-year follow-up in initially healthy 58-year-old men,” Metabolic Syndrome and Related Disordoers, vol. 10, no. 6, pp. 394–399, 2012.
[10]  H. M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002.
[11]  R. L. Hanson, G. Imperatore, P. H. Bennett, and W. C. Knowler, “Components of the “metabolic syndrome” and incidence of type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 3120–3127, 2002.
[12]  G. Assmann, J. R. Nofer, and H. Schulte, “Cardiovascular risk assessment in metabolic syndrome: view from PROCAM,” Endocrinology and Metabolism Clinics of North America, vol. 33, no. 2, pp. 377–392, 2004.
[13]  S. Devaraj, R.S. Rosenson, and I. Jialal, “Metabolic syndrome: an appraisal of the pro-inflammatory and procoagulant status,” Endocrinology and Metabolism Clinics of North America, vol. 33, pp. 431–453, 2004.
[14]  S. Devaraj, D. Siegel, and I. Jialal, “Inflammation and metabolic syndrome,” in The Metabolic Syndrome, C. D. Byrne and S.H. Wild, Eds., ch 13, pp. 210–228, Wiley-Blackwell, 2nd edition, 2011.
[15]  J. M. Northcott, A. Yeganeh, C. G. Taylor, P. Zahradka, and J. T. Wigle, “Adipokines and the cardiovascular system: mechanisms mediating health and disease,” Canadian Journal of Physiology and Pharmacology, vol. 90, no. 8, pp. 1029–1059, 2012.
[16]  M. Bluher, “Clinical relevance of adipokines,” Diabetes and Metabolism Journal, vol. 36, no. 5, pp. 317–327, 2012.
[17]  I. Jialal, S. Devaraj, B. A. Huet, X. Chen, and H. Kaur, “Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 10, pp. E1844–E1850, 2012.
[18]  G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006.
[19]  R. Monteiro and I. Azevedo, “Chronic inflammation in obesity and the metabolic syndrome,” Mediators of Inflammation, vol. 2010, Article ID 289645, 10 pages, 2010.
[20]  J. P. Despres, S. Lemieux, B. Lamarche et al., “The insulin resistance dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications,” International Journal of Obesity, vol. 19, no. 1, supplement, pp. S76–S86, 1995.
[21]  J. P. Després, “Is visceral obesity the cause of the metabolic syndrome?” Annals of Medicine, vol. 38, no. 1, pp. 52–63, 2006.
[22]  C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007.
[23]  S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O'Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009.
[24]  B. H. Goodpaster, F. L. Thaete, J. A. Simoneau, and D. E. Kelley, “Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat,” Diabetes, vol. 46, no. 10, pp. 1579–1585, 1997.
[25]  N. Abate, A. Garg, R. M. Peshock, J. Stray-Gundersen, and S. M. Grundy, “Relationships of generalized and regional adiposity to insulin sensitivity in men,” Journal of Clinical Investigation, vol. 96, no. 1, pp. 88–98, 1995.
[26]  N. Abate, A. Garg, R. M. Peshock, J. Stray-Gundersen, B. Adams-Huet, and S. M. Grundy, “Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM,” Diabetes, vol. 45, no. 12, pp. 1684–1693, 1996.
[27]  I. Ferreira, R. M. A. Henry, J. W. R. Twisk, W. Van Mechelen, H. C. G. Kemper, and C. D. A. Stehouwer, “The metabolic syndrome, cardiopulmonary fitness, and subcutaneous trunk fat as independent determinants of arterial stiffness. The Amsterdam Growth and Health Longitudinal Study,” Archives of Internal Medicine, vol. 165, no. 8, pp. 875–882, 2005.
[28]  U. Salmenniemi, E. Ruotsalainen, J. Pihlajam?ki et al., “Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome,” Circulation, vol. 110, no. 25, pp. 3842–3848, 2004.
[29]  D. B. Carr, K. M. Utzschneider, R. L. Hull et al., “Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome,” Diabetes, vol. 53, no. 8, pp. 2087–2094, 2004.
[30]  C. M. Apovian, S. Bigornia, M. Mott et al., “Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1654–1659, 2008.
[31]  A. A. Bremer, S. Devaraj, A. Afify, and I. Jialal, “Adipose tissue dysregulation in patients with metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 11, pp. E1782–E1788, 2011.
[32]  S. Devaraj, G. Jialal, T. Cook, D. Siegel, and I. Jialal, “Low vitamin D levels in Northern American adults with the metabolic syndrome,” Hormone and Metabolic Research, vol. 43, no. 1, pp. 72–74, 2011.
[33]  E. K. Anderson, D. A. Gutierrez, and A. H. Hasty, “Adipose tissue recruitment of leukocytes,” Current Opinion in Lipidology, vol. 21, no. 3, pp. 172–177, 2010.
[34]  B. K. Surmi and A. H. Hasty, “Macrophage infiltration into adipose tissue: initiation, propagation and remodeling,” Future Lipidology, vol. 3, no. 5, pp. 545–556, 2008.
[35]  I. S. Wood, F. P. De Heredia, B. Wang, and P. Trayhurn, “Cellular hypoxia and adipose tissue dysfunction in obesity,” Proceedings of the Nutrition Society, vol. 68, no. 4, pp. 370–377, 2009.
[36]  S. Gormez, A. Demirkan, F. Atalar et al., “Adipose tissue gene expression of adiponectin, tumor necrosis factor-α and leptin in metabolic syndrome patients with coronary artery disease,” Internal Medicine, vol. 50, no. 8, pp. 805–810, 2011.
[37]  H. S. Sacks, J. N. Fain, P. Cheema et al., “Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone,” Diabetes Care, vol. 34, no. 3, pp. 730–733, 2011.
[38]  G. R. Hajer, T. W. Van Haeften, and F. L. J. Visseren, “Adipose tissue dysfunction in obesity, diabetes, and vascular diseases,” European Heart Journal, vol. 29, no. 24, pp. 2959–2971, 2008.
[39]  G. Fantuzzi and T. Mazzone, “Adipose tissue and atherosclerosis: exploring the connection,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 996–1003, 2007.
[40]  Y. Deng and P. E. Scherer, “Adipokines as novel biomarkers and regulators of the metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1212, pp. E1–E19, 2010.
[41]  N. Ouchi, S. Kihara, T. Funahashi et al., “Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue,” Circulation, vol. 107, no. 5, pp. 671–674, 2003.
[42]  S. K. Venugopal, S. Devaraj, and I. Jialal, “Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects,” American Journal of Pathology, vol. 166, no. 4, pp. 1265–1271, 2005.
[43]  I. Huang-Doran, A. Sleigh, J. J. Rochford, S. O'Rahilly, and D. B. Savage, “Lipodystrophy: metabolic insights from a rare disorder,” Journal of Endocrinology, vol. 207, no. 3, pp. 245–255, 2010.
[44]  C. Mitchell, D. Couton, J. P. Couty et al., “Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice,” American Journal of Pathology, vol. 174, no. 5, pp. 1766–1775, 2009.
[45]  A. Ito, T. Suganami, A. Yamauchi et al., “Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35715–35723, 2008.
[46]  M. C. Ernst and C. J. Sinal, “Chemerin: at the crossroads of inflammation and obesity,” Trends in Endocrinology and Metabolism, vol. 21, no. 11, pp. 660–667, 2010.
[47]  K. Bozaoglu, D. Segal, K. A. Shields et al., “Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 8, pp. 3085–3088, 2009.
[48]  H. Sell, A. Divoux, C. Poitou et al., “Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2892–2896, 2010.
[49]  H. Sell, J. Laurencikiene, A. Taube et al., “Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells,” Diabetes, vol. 58, no. 12, pp. 2731–2740, 2009.
[50]  D. Stejskal, M. Karpisek, Z. Hanulova, and M. Svestak, “Chemerin is an independent marker of the metabolic syndrome in a Caucasian population—a pilot study,” Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, vol. 152, no. 2, pp. 217–221, 2008.
[51]  S. H. Chu, M. K. Lee, K. Y. Ahn, et al., “Chemerin and adiponectin contribute reciprocally to metabolic syndrome,” PLoS ONE, vol. 7, no. 4, Article ID e34710, 2012.
[52]  B. Dong, W. Ji, and Y. Zhang, “Elevated serum chemerin levels are associated with the Presence of coronary artery disease in patients with metabolic syndrome,” Internal Medicine, vol. 50, no. 10, pp. 1093–1097, 2011.
[53]  J. Weigert, M. Neumeier, J. Wanninger et al., “Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes,” Clinical Endocrinology, vol. 72, no. 3, pp. 342–348, 2010.
[54]  A. Sch?ffler, M. Neumeier, H. Herfarth, A. Fürst, J. Sch?lmerich, and C. Büchler, “Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue,” Biochimica et Biophysica Acta, vol. 1732, no. 1–3, pp. 96–102, 2005.
[55]  B. K. Tan, R. Adya, and H. S. Randeva, “Omentin: a novel link between inflammation, diabesity, and cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 20, no. 5, pp. 143–148, 2010.
[56]  C. M. De Souza Batista, R. Z. Yang, M. J. Lee et al., “Omentin plasma levels and gene expression are decreased in obesity,” Diabetes, vol. 56, no. 6, pp. 1655–1661, 2007.
[57]  F. J. Shang, J. P. Wang, X. T. Liu, et al., “Serum omentin-1 levels are inversely associated with the presence and severity of coronary artery disease in patients with metabolic syndrome,” Biomarkers, vol. 16, no. 8, pp. 657–662, 2011.
[58]  E. Gremese and G. Ferraccioli, “The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risk,” Autoimmunity Reviews, vol. 10, no. 10, pp. 582–589, 2011.
[59]  I. Jialal, S. Devaraj, H. Kaur, B. A. Huet, and A. A. Bremer, “Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, 2013.
[60]  I. Jialal, B. A. Huet, H. Kaur, A. Chien, and S. Devaraj, “Increased toll-like receptor activity in patients with metabolic syndrome,” Diabetes Care, vol. 35, no. 4, pp. 900–904, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133