全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Does Rebound Tonometry Probe Misalignment Modify Intraocular Pressure Measurements in Human Eyes?

DOI: 10.1155/2013/791084

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. To examine the influence of positional misalignments on intraocular pressure (IOP) measurement with a rebound tonometer. Methods. Using the iCare rebound tonometer, IOP readings were taken from the right eye of 36 healthy subjects at the central corneal apex (CC) and compared to IOP measures using the Goldmann applanation tonometer (GAT). Using a bespoke rig, iCare IOP readings were also taken 2?mm laterally from CC, both nasally and temporally, along with angular deviations of 5 and 10 degrees, both nasally and temporally to the visual axis. Results. Mean IOP?±?SD, as measured by GAT, was ?mmHg versus iCare tonometer readings of ?mmHg at CC, representing an iCare IOP overestimation of ?mmHg ( ), which increased at higher average IOPs. IOP at CC using the iCare tonometer was not significantly different to values at lateral displacements. IOP was marginally underestimated with angular deviation of the probe but only reaching significance at 10 degrees nasally. Conclusions. As shown previously, the iCare tonometer overestimates IOP compared to GAT. However, IOP measurement in normal, healthy subjects using the iCare rebound tonometer appears insensitive to misalignments. An IOP underestimation of <1?mmHg with the probe deviated 10 degrees nasally reached statistical but not clinical significance levels. 1. Introduction The iCare TA01i (Icare Finland Oy, Helsinki, Finland) rebound tonometer is a relatively recent addition to the portfolio of tonometers currently available to the ophthalmic practitioner for measuring intraocular pressure (IOP). Hitherto, studies have shown that the rebound tonometer performs adequately as a screening tool in comparison to the Goldmann applanation tonometer (GAT; Clement Clarke International, Harlow, UK) and other handheld tonometry devices [1–4]. In brief, the iCare TA01i rebound tonometer comprises a solenoid and housing, a magnetised probe, and other associated electronics. The probe is 40?mm long, 0.3?mm in diameter with a 1.7?mm diameter plastic end-tip [5]. The device employs a solenoid to fire the probe to travel towards the cornea at a velocity of approximately 0.2?m/s. Following the propulsion pulse, electronics switch to monitor the voltage induced in the solenoid coil by the movement of the magnetised probe, allowing the speed and direction of probe movement to be monitored. Signal processing electronics and microcontrollers then derive the probe deceleration time on corneal impact and convert this to a measure of IOP. As the iCare probe has a small footprint, it is possible to measure IOP in a number of

References

[1]  P. Fernandes, J. A. Díaz-Rey, A. Queirós, J. M. Gonzalez-Meijome, and J. Jorge, “Comparison of the ICare rebound tonometer with the Goldmann tonometer in a normal population,” Ophthalmic and Physiological Optics, vol. 25, no. 5, pp. 436–440, 2005.
[2]  L. M. Abraham, N. C. R. Epasinghe, D. Selva, and R. Casson, “Comparison of the ICare rebound tonometer with the Goldmann applanation tonometer by experienced and inexperienced tonometrists,” Eye, vol. 22, no. 4, pp. 503–506, 2008.
[3]  J. M. Martinez-de-la-Casa, M. Jimenez-Santos, F. Saenz-Frances et al., “Performance of the rebound, noncontact and Goldmann applanation tonometers in routine clinical practice,” Acta Ophthalmologica, vol. 89, no. 7, pp. 676–680, 2011.
[4]  M. Sakamoto, A. Kanamori, M. Fujihara, Y. Yamada, M. Nakamura, and A. Negi, “Assessment of IcareONE rebound tonometer for self-measuring intraocular pressure,” Acta Ophthalmologica, 2013.
[5]  L. N. Davies, H. Bartlett, E. A. H. Mallen, and J. S. Wolffsohn, “Clinical evaluation of rebound tonometer,” Acta Ophthalmologica Scandinavica, vol. 84, no. 2, pp. 206–209, 2006.
[6]  A. Queirós, J. M. González-Méijome, P. Fernandes et al., “Technical note: a comparison of central and peripheral intraocular pressure using rebound tonometry,” Ophthalmic and Physiological Optics, vol. 27, no. 5, pp. 506–511, 2007.
[7]  J. Takenaka, H. Mochizuki, E. Kunihara, J. Tanaka, and Y. Kiuchi, “Intraocular pressure measurement using rebound tonometer for deviated angles and positions in human eyes,” Current Eye Research, vol. 37, no. 2, pp. 109–114, 2012.
[8]  T. Yamashita, A. Miki, Y. Ieki, J. Kiryu, K. Yaoeda, and M. Shirakashi, “Central and peripheral intraocular pressure measured by a rebound tonometer,” Clinical Ophthalmology, vol. 5, no. 1, pp. 1113–1118, 2011.
[9]  J. Jorge, P. Fernandes, A. Queirós, P. Ribeiro, C. Garcês, and J. M. Gonzalez-Meijome, “Comparison of the IOPen and iCare rebound tonometers with the Goldmann tonometer in a normal population,” Ophthalmic and Physiological Optics, vol. 30, no. 1, pp. 108–112, 2010.
[10]  J. B. Rehnman and L. Martin, “Comparison of rebound and applanation tonometry in the management of patients treated for glaucoma or ocular hypertension,” Ophthalmic and Physiological Optics, vol. 28, no. 4, pp. 382–386, 2008.
[11]  D. V. Muttuvelu, K. Baggensen, and N. Ehlers, “Precision and accuracy of the ICare tonometer—peripheral and central IOP measurements by rebound tonometry,” Acta Ophthalmologica, vol. 90, no. 4, pp. 322–326, 2012.
[12]  J. M. Gilchrist, “On the precision and reliability of IOP measurements,” The British Journal of Ophthalmology, vol. 80, no. 7, pp. 586–587, 1996.
[13]  F. W. Stocker, “On changes in intraocular pressure after application of the tonometer. In the same eye and in the other eye,” The American Journal of Ophthalmology, vol. 45, no. 2, pp. 192–196, 1958.
[14]  L. N. Davies, H. E. Bartlett, and M. C. M. Dunne, “Cling film as a barrier against CJD in Goldmann-type applanation tonometry,” Ophthalmic and Physiological Optics, vol. 24, no. 1, pp. 27–34, 2004.
[15]  R. David, L. Zangwill, D. Briscoe, M. Dagan, R. Yagev, and Y. Yassur, “Diurnal intraocular pressure variations: an analysis of 690 diurnal curves,” The British Journal of Ophthalmology, vol. 76, no. 5, pp. 280–283, 1992.
[16]  R. A. Armstrong, L. N. Davies, M. C. M. Dunne, and B. Gilmartin, “Statistical guidelines for clinical studies of human vision,” Ophthalmic and Physiological Optics, vol. 31, no. 2, pp. 123–136, 2011.
[17]  J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986.
[18]  J. M. Bland and D. G. Altman, “Comparing methods of measurement: why plotting difference against standard method is misleading,” The Lancet, vol. 346, no. 8982, pp. 1085–1087, 1995.
[19]  S. Munkwitz, A. Elkarmouty, E. M. Hoffmann, N. Pfeiffer, and H. Thieme, “Comparison of the iCare rebound tonometer and the Goldmann applanation tonometer over a wide IOP range,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 6, pp. 875–879, 2008.
[20]  G. Jóhannesson, P. Hallberg, A. Eklund, and C. Lindén, “Pascal, ICare and Goldmann applanation tonometry—a comparative study,” Acta Ophthalmologica, vol. 86, no. 6, pp. 614–621, 2008.
[21]  C. D. Phelps and G. K. Phelps, “Measurement of intraocular pressure: a study of its reproducibility,” Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, vol. 198, no. 1, pp. 39–43, 1976.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413