全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pattern Strabismus: Where Does the Brain's Role End and the Muscle's Begin?

DOI: 10.1155/2013/301256

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vertically incomitant pattern strabismus comprises 50% of infantile horizontal strabismus. The oblique muscle dysfunction has been associated with pattern strabismus. High-resolution orbit imaging and contemporary neurophysiology studies in non-human primate models of strabismus have shed light into the mechanisms of pattern strabismus. In this review, we will examine our current understanding of etiologies of pattern strabismus. Speculated pathophysiology includes oblique muscle dysfunction, loss of fusion with altered recti muscle pull, displacements and instability in connective tissue pulleys of the recti muscles, vestibular hypofunction, and abnormal neural connections. Orbital mechanical factors, such as abnormal pulleys, were reported as a cause of pattern strabismus in patients with craniofacial anomalies, connective tissue disorders, and late-onset strabismus. In contrast, abnormal neural connections could be responsible for the development of a pattern in infantile-onset strabismus. Pattern strabismus is likely multifactorial. Understanding the mechanisms of pattern strabismus is pivotal to determine an appropriate surgical treatment strategy for these patients. 1. Background “A” and “V” patterns describe horizontal strabismus that is vertically incomitant and is characterized by a substantial change in the horizontal deviation from the midline position in upgaze as compared to downgaze. Approximately 12–50% of strabismus patients have “A” or “V” patterns [1–4]. “A” and “V” patterns are relatively frequent in patients with infantile-onset strabismus. “A” pattern is present when a horizontal deviation shows a more convergent (less divergent) alignment in upgaze compared with downgaze. The “V” pattern describes a horizontal deviation that is more convergent (less divergent) in downgaze compared with upgaze. The “A” pattern is considered clinically significant when the difference in the measurement between upgaze and downgaze, each approximately 25° from the primary position, is at least 10 prism diopters ( ). The “V” pattern is considered clinically significant when the difference is at least 15 . Other patterns include “Y” where exodeviation is present only in upgaze, lambda (“λ”) where exodeviation is present only in downgaze, or “X” where exodeviation is present in downgaze and upgaze compared to the primary position. This review will focus on “A” and “V” pattern strabismus. Several theories have been proposed to describe the pathophysiology of “A” and “V” pattern strabismus. Initially it was believed that pattern strabismus is the

References

[1]  R. D. Harley and D. R. Manley, “Bilateral superior oblique tenectomy in A-pattern exotropia,” Transactions of the American Ophthalmological Society, vol. 67, pp. 324–338, 1969.
[2]  P. Knapp, “Vertically incomitant horizontal strabismus: the so-called, “A” and, “V” syndromes,” Transactions of the American Ophthalmological Society, vol. 57, pp. 666–99, 1959.
[3]  M. J. Urist, “The etiology of the so-called A and V syndromes,” American Journal of Ophthalmology, vol. 46, no. 6, pp. 835–844, 1958.
[4]  F. D. Costenbader, “Ymposium: the a and V Patterns in Strabismus,” Transactions American Academy of Ophthalmology and Otolaryngology, vol. 68, pp. 354–355, 1964.
[5]  M. J. Urist, “Horizontal squint with secondary vertical deviations,” AMA Archives of Ophthalmology, vol. 46, no. 3, pp. 245–267, 1951.
[6]  H. W. Brown, “Symposium; strabismus; vertical deviations,” Transactions American Academy of Ophthalmology and Otolaryngology, vol. 57, no. 2, pp. 157–162, 1953.
[7]  R. W. Hertle, “A next step in naming and classification of eye movement disorders and strabismus,” Journal of AAPOS, vol. 6, no. 4, pp. 201–202, 2002.
[8]  W. H. Fink, “The role of developmental anomalies in vertical muscle defects,” American Journal of Ophthalmology, vol. 40, no. 4, pp. 529–553, 1955.
[9]  A. W. Biglan, “Ophthalmologic complications of meningomyelocele: a longitudinal study,” Transactions of the American Ophthalmological Society, vol. 88, pp. 389–462, 1990.
[10]  T. D. France, “Strabismus in hydrocephalus,” American Orthoptic Journal, vol. 25, pp. 101–105, 1975.
[11]  A. Urrets-Zavalía, J. Solares-Zamora, and H. R. Olmos, “Anthropological studies on the nature of cyclovertical squint,” The British journal of ophthalmology, vol. 45, no. 9, pp. 578–596, 1961.
[12]  J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Research, vol. 29, no. 2, pp. 223–240, 1989.
[13]  J. L. Demer, J. M. Miller, V. Poukens, H. V. Vinters, and B. J. Glasgow, “Evidence for fibromuscular pulleys of the recti extraocular muscles,” Investigative Ophthalmology and Visual Science, vol. 36, no. 6, pp. 1125–1136, 1995.
[14]  J. L. Demer, V. Poukens, J. M. Miller, and P. Micevych, “Innervation of extraocular pulley smooth muscle in monkeys and humans,” Investigative Ophthalmology and Visual Science, vol. 38, no. 9, pp. 1774–1785, 1997.
[15]  S. P. W. Van Den Bedem, S. Schutte, F. C. T. Van Der Helm, and H. J. Simonsz, “Mechanical properties and functional importance of pulley bands or 'faisseaux tendineux',” Vision Research, vol. 45, no. 20, pp. 2710–2714, 2005.
[16]  S. Schutte, S. P. W. Van Den Bedem, F. Van Keulen, F. C. T. Van Der Helm, and H. J. Simonsz, “A finite-element analysis model of orbital biomechanics,” Vision Research, vol. 46, no. 11, pp. 1724–1731, 2006.
[17]  J. L. Demer, “Regarding van den bedem, schutte, van der helm, and simonsz: mechanical properties and functional importance of pulley bands or 'faisseaux tendineux',” Vision Research, vol. 46, no. 18, pp. 3036–3038, 2006.
[18]  R. A. Clark, J. M. Miller, and J. L. Demer, “Three-dimensional location of human rectus pulleys by path infections in secondary gaze positions,” Investigative Ophthalmology and Visual Science, vol. 41, no. 12, pp. 3787–3797, 2000.
[19]  J. L. Demer, “Pivotal role of orbital connective tissues in binocular alignment and strabismus: the friedenwald lecture,” Investigative Ophthalmology and Visual Science, vol. 45, no. 3, pp. 729–738, 2004.
[20]  R. Kono, R. A. Clark, and J. L. Demer, “Active pulleys: magnetic resonance imaging of rectus muscle paths in tertiary gazes,” Investigative Ophthalmology and Visual Science, vol. 43, no. 7, pp. 2179–2188, 2002.
[21]  J. L. Demer, S. Y. Oh, and V. Poukens, “Evidence for active control of rectus extraocular muscle pulleys,” Investigative Ophthalmology and Visual Science, vol. 41, no. 6, pp. 1280–1290, 2000.
[22]  E. T. Detorakis, R. E. Engstrom, B. R. Straatsma, and J. L. Demer, “Functional anatomy of the anophthalmic socket: insights from magnetic resonance imaging,” Investigative Ophthalmology and Visual Science, vol. 44, no. 10, pp. 4307–4313, 2003.
[23]  J. M. Miller, J. L. Demer, and A. L. Rosenbaum, “Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging,” Ophthalmology, vol. 100, no. 4, pp. 475–487, 1993.
[24]  F. F. Ghasia and D. E. Angelaki, “Do motoneurons encode the noncommutativity of ocular rotations?” Neuron, vol. 47, no. 2, pp. 281–293, 2005.
[25]  E. M. Klier, H. Meng, and D. E. Angelaki, “Three-dimensional kinematics at the level of the oculomotor plant,” Journal of Neuroscience, vol. 26, no. 10, pp. 2732–2737, 2006.
[26]  J. L. Demer, J. M. Miller, and V. Poukens, “Surgical implications of the rectus extraocular muscle pulleys,” Journal of Pediatric Ophthalmology and Strabismus, vol. 33, no. 4, pp. 208–218, 1996.
[27]  R. A. Clark, J. M. Miller, A. L. Rosenbaum, and J. L. Demer, “Heterotopic muscle pulleys or oblique muscle dysfunction?” Journal of AAPOS, vol. 2, no. 1, pp. 17–25, 1998.
[28]  S. Y. Oh, R. A. Clark, F. Velez, A. L. Rosenbaum, and J. L. Demer, “Incomitant strabismus associated with instability of rectus pulleys,” Investigative Ophthalmology and Visual Science, vol. 43, no. 7, pp. 2169–2178, 2002.
[29]  M. Miller and E. Folk, “Strabismus associated with craniofacial anomalies,” American Orthoptic Journal, vol. 25, pp. 27–37, 1975.
[30]  R. M. Robb and W. P. Boger III, “Vertical strabismus associated with plagiocephaly,” Journal of Pediatric Ophthalmology and Strabismus, vol. 20, no. 2, pp. 58–62, 1983.
[31]  A. Dickmann, R. Parrilla, S. Aliberti, et al., “Prevalence of neurological involvement and malformative/systemic syndromes in A- and V-pattern strabismus,” Ophthalmic Epidemiology, vol. 19, no. 5, Article ID 694553, pp. 302–35, 2012.
[32]  L. Tychsen, M. Richards, A. Wong et al., “Spectrum of infantile esotropia in primates: behavior, brains, and orbits,” Journal of AAPOS, vol. 12, no. 4, pp. 375–380, 2008.
[33]  M. M. Miller and D. L. Guyton, “Loss of fusion and the development of A or V patterns,” Journal of Pediatric Ophthalmology and Strabismus, vol. 31, no. 4, pp. 220–224, 1994.
[34]  H. S. Eustis and J. D. Nussdorf, “Inferior oblique overaction in infantile esotropia: fundus extorsion as a predictive sign,” Journal of Pediatric Ophthalmology and Strabismus, vol. 33, no. 2, pp. 85–88, 1996.
[35]  V. E. Das, L. N. Fu, M. J. Mustari, and R. J. Tusa, “Incomitance in monkeys with strabismus,” Strabismus, vol. 13, no. 1, pp. 33–41, 2005.
[36]  V. E. Das and M. J. Mustari, “Correlation of cross-axis eye movements and motoneuron activity in non-human primates with, “A” pattern strabismus,” Investigative Ophthalmology & Visual Science, vol. 48, no. 2, pp. 665–74, 2007.
[37]  A. C. Joshi and V. E. Das, “Responses of medial rectus motoneurons in monkeys with strabismus,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6697–705, 2011.
[38]  G. Ugolini, F. Klam, M. D. Dans et al., “Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to “slow” and “fast” abducens motoneurons,” Journal of Comparative Neurology, vol. 498, no. 6, pp. 762–785, 2006.
[39]  M. J. Mustari, R. J. Tusa, A. F. Burrows, A. F. Fuchs, and C. A. Livingston, “Gaze-stabilizing deficits and latent nystagmus in monkeys with early-onset visual deprivation: role of the pretectal not,” Journal of Neurophysiology, vol. 86, no. 2, pp. 662–675, 2001.
[40]  K. P. Hoffmann and J. Stone, “Retinal input to the nucleus of the optic tract of the cat assessed by antidromic activation of ganglion cells,” Experimental Brain Research, vol. 59, no. 2, pp. 395–403, 1985.
[41]  K.-P. Hoffmann, C. Distler, and U. Ilg, “Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey's nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract,” Journal of Comparative Neurology, vol. 321, no. 1, pp. 150–162, 1992.
[42]  M. J. Mustari, A. F. Fuchs, C. R. S. Kaneko, and F. R. Robinson, “Anatomical connections of the primate pretectal nucleus of the optic tract,” Journal of Comparative Neurology, vol. 349, no. 1, pp. 111–128, 1994.
[43]  M. Cynader and K. P. Hoffmann, “Strabismus disrupts binocular convergence in cat nucleus of the optic tract,” Brain Research, vol. 227, no. 1, pp. 132–136, 1981.
[44]  C. Distler and K.-P. Hoffmann, “Retinal slip neurons in the nucleus of the optic tract and dorsal terminal nucleus in cats with congenital strabismus,” Journal of Neurophysiology, vol. 75, no. 4, pp. 1483–1494, 1996.
[45]  J. H. R. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” Journal of Neurophysiology, vol. 49, no. 5, pp. 1127–1147, 1983.
[46]  R. J. Tusa, M. J. Mustari, V. E. Das, and R. G. Boothe, “Animal models for visual deprivation-induced strabismus and nystagmus,” Annals of the New York Academy of Sciences, vol. 956, pp. 346–360, 2002.
[47]  A. Hasany, A. Wong, P. Foeller, D. Bradley, and L. Tychsen, “Duration of binocular decorrelation in infancy predicts the severity of nasotemporal pursuit asymmetries in strabismic macaque monkeys,” Neuroscience, vol. 156, no. 2, pp. 403–411, 2008.
[48]  M. Richards, A. Wong, P. Foeller, D. Bradley, and L. Tychsen, “Duration of binocular decorrelation predicts the severity of latent (fusion maldevelopment) nystagmus in strabismic macaque monkeys,” Investigative Ophthalmology and Visual Science, vol. 49, no. 5, pp. 1872–1878, 2008.
[49]  L. Tychsen, M. Richards, A. Wong, P. Foeller, D. Bradley, and A. Burkhalter, “The neural mechanism for latent (fusion maldevelopment) nystagmus,” Journal of Neuro-Ophthalmology, vol. 30, no. 3, pp. 276–83, 2010.
[50]  L. Tychsen, “Causing and curing infantile esotropia in primates: the role of decorrelated binocular input (an American Ophthalmological Society thesis),” Transactions of the American Ophthalmological Society, vol. 105, pp. 564–593, 2007.
[51]  S. P. Donahue and P. Itharat, “A-pattern strabismus with overdepression in adduction: a special type of bilateral skew deviation?” Journal of AAPOS, vol. 14, no. 1, pp. 42–46, 2010.
[52]  S. Y. Lee and A. L. Rosenbaum, “Surgical results of patients with A-pattern horizontal strabismus,” Journal of AAPOS, vol. 7, no. 4, pp. 251–25, 2003.
[53]  B. J. Kushner, “Effect of ocular torsion on A and V patterns and apparent oblique muscle overaction,” Archives of Ophthalmology, vol. 128, no. 6, pp. 712–78, 2010.
[54]  B. J. Kushner, “Torsion and pattern strabismus: potential conflicts in treatment,” JAMA Ophthalmology, vol. 131, no. 2, pp. 190–13, 2013.
[55]  S. L. Pineles, A. L. Rosenbaum, and J. L. Demer, “Decreased postoperative drift in intermittent exotropia associated with A and V patterns,” Journal of AAPOS, vol. 13, no. 2, pp. 127–131, 2009.
[56]  S. L. Pineles, A. L. Rosenbaum, and J. L. Demer, “Changes in binocular alignment after surgery for concomitant and pattern intermittent exotropia,” Strabismus, vol. 16, no. 2, pp. 57–63, 2008.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133