全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vascular Adhesion Protein 1 in the Eye

DOI: 10.1155/2013/925267

Full-Text   Cite this paper   Add to My Lib

Abstract:

Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1), a dual-function molecule with adhesive and enzymatic properties, is expressed on the surface of vascular endothelial cells of mammals. It also exists as a soluble form (sVAP-1), which is implicated in oxidative stress via its enzymatic activity and can be a prognostic biomarker. Recent evidence suggests that VAP-1 is an important therapeutic target for several inflammation-related ocular diseases, such as uveitis, age-related macular degeneration (AMD), and diabetic retinopathy (DR), by involving in the recruitment of leukocytes at sites of inflammation. Furthermore, VAP-1 plays an important role in the pathogenesis of conjunctival inflammatory diseases such as pyogenic granulomas and the progression of conjunctival lymphoma. VAP-1 may be an alternative therapeutic target in ocular diseases. The in vivo imaging of inflammation using VAP-1 as a target molecule is a novel approach with a potential for early detection and characterization of inflammatory diseases. This paper reviews the critical roles of VAP-1 in ophthalmological diseases which may provide a novel research direction or a potent therapeutic strategy. 1. Introduction Vascular adhesion protein-1 (VAP-1) is a homodimeric sialylated glycoprotein originally discovered in inflamed synovial vessels by Salmi and Jalkanen in 1992 [1]. VAP-1 is a multifunctional molecule that possesses enzymatic activity known as semicarbazide-sensitive amine oxidase (SSAO) and is involved in the leukocyte recruitment cascade. The VAP-1 molecule consists of an extracellular part, which harbors the catalytic site, a transmembrane segment, and a short intracellular N-terminal tail [2, 3]. On the plasma membrane, VAP-1 normally forms a homodimer of two 90?kDa glycoproteins. The extracellular part of each monomer consists of three domains (D2–D4). VAP-1 has a relatively narrow substrate channel formed by domains D4 and D3, and a key leucine (469 in human) guards the entry of substrates. The large D4 domains, from each subunit, form the dimer interface and each also contains a catalytic site, buried at the base of a deep cleft. VAP-1 exists as membrane-bound and soluble forms in the plasma. Its major sources are endothelial cells, smooth muscle cells, and the adipocytes [4]. VAP-1 is expressed on the endothelium of human tissues such as skin, brain, lung, liver, and heart under both normal and inflamed conditions [4–8]. In the ocular tissues of humans and rats, VAP-1 is localized on the endothelial cells of retinal and choroidal vessels

References

[1]  M. Salmi and S. Jalkanen, “A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans,” Science, vol. 257, no. 5075, pp. 1407–1409, 1992.
[2]  T. T. Airenne, Y. Nymalm, H. Kidron et al., “Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications,” Protein Science, vol. 14, no. 8, pp. 1964–1974, 2005.
[3]  K. Ernberg, A. P. McGrath, T. S. Peat, et al., “A new crystal form of human vascular adhesion protein 1,” Acta Crystallographica F, vol. 66, part 12, pp. 1572–1578, 2010.
[4]  M. Salmi, K. Kalimo, and S. Jalkanen, “Induction and function of vascular adhesion protein-1 at sites of inflammation,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2255–2260, 1993.
[5]  K. Koskinen, P. J. Vainio, D. J. Smith et al., “Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1),” Blood, vol. 103, no. 9, pp. 3388–3395, 2004.
[6]  E. Akin, J. Aversa, and A. C. Steere, “Expression of adhesion molecules in synovia of patients with treatment-resistant lyme arthritis,” Infection and Immunity, vol. 69, no. 3, pp. 1774–1780, 2001.
[7]  K. Jaakkola, S. Jalkanen, K. Kaunism?ki et al., “Vascular adhesion protein-1, intercellular adhesion molecule-1 and P-selectin mediate leukocyte binding to ischemic heart in humans,” Journal of the American College of Cardiology, vol. 36, no. 1, pp. 122–129, 2000.
[8]  B. Singh, T. Tschernig, M. van Griensven, A. Fieguth, and R. Pabst, “Expression of vascular adhesion protein-1 in normal and inflamed mice lungs and normal human lungs,” Virchows Archiv, vol. 442, no. 5, pp. 491–495, 2003.
[9]  L. Almulki, K. Noda, S. Nakao, T. Hisatomi, K. L. Thomas, and A. Hafezi-Moghadam, “Localization of vascular adhesion protein-1 (VAP-1) in the human eye,” Experimental Eye Research, vol. 90, no. 1, pp. 26–32, 2010.
[10]  K. Noda, S. Nakao, S. Zandi, V. Engelst?dter, Y. Mashima, and A. Hafezi-Moghadam, “Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes,” Experimental Eye Research, vol. 89, no. 5, pp. 774–781, 2009.
[11]  K. Noda, S. Miyahara, T. Nakazawa et al., “Inhibition of vascular adhesion protein-1 suppresses endotoxin-induced uveitis,” The FASEB Journal, vol. 22, no. 4, pp. 1094–1103, 2008.
[12]  K. Noda, H. She, T. Nakazawa et al., “Vascular adhesion protein-1 blockade suppresses choroidal neovascularization,” The FASEB Journal, vol. 22, no. 8, pp. 2928–2935, 2008.
[13]  M. Salmi, P. Rajala, and S. Jalkanen, “Homing of mucosal leukocytes to joints: distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion,” Journal of Clinical Investigation, vol. 99, no. 9, pp. 2165–2172, 1997.
[14]  P. H. Yu, S. Wright, E. H. Fan, Z. Lun, and D. Gubisne-Harberle, “Physiological and pathological implications of semicarbazide-sensitive amine oxidase,” Biochimica et Biophysica Acta, vol. 1647, no. 1-2, pp. 193–199, 2003.
[15]  H. Izuta, N. Matsunaga, M. Shimazawa, T. Sugiyama, T. Ikeda, and H. Hara, “Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body,” Molecular Vision, vol. 16, pp. 130–136, 2010.
[16]  A. Belkhiri, C. Richards, M. Whaley, S. A. McQueen, and F. W. Orr, “Increased expression of activated matrix metalloproteinase-2 by human endothelial cells after sublethal H2O2 exposure,” Laboratory Investigation, vol. 77, no. 5, pp. 533–539, 1997.
[17]  M. C. A. Duyndam, T. M. Hulscher, D. Fontijn, H. M. Pinedo, and E. Boven, “Induction of vascular endothelial growth factor expression and hypoxia-inducible factor 1α protein by the oxidative stressor arsenite,” Journal of Biological Chemistry, vol. 276, no. 51, pp. 48066–48076, 2001.
[18]  A. Rothova, T. T. J. M. Berendschot, K. Probst, B. van Kooij, and G. S. Baarsma, “Birdshot chorioretinopathy: long-term manifestations and visual prognosis,” Ophthalmology, vol. 111, no. 5, pp. 954–959, 2004.
[19]  O. M. Durrani, N. N. Tehrani, J. E. Marr, P. Moradi, P. Stavrou, and P. I. Murray, “Degree, duration, and causes of visual loss in uveitis,” British Journal of Ophthalmology, vol. 88, no. 9, pp. 1159–1162, 2004.
[20]  N. Vidovic-Valentincic, A. Kraut, M. Hawlina, ?. ?tunf, and A. Rothova, “Intermediate uveitis: long-term course and visual outcome,” British Journal of Ophthalmology, vol. 93, no. 4, pp. 477–480, 2009.
[21]  T. I. Tugal, S. Onal, Y. R. Altan, H. H. Altunbas, and M. Urgancioglu, “Uveitis in Behcet disease: an analysis of 880 patients,” American Journal of Ophthalmology, vol. 138, no. 3, pp. 373–380, 2004.
[22]  P. Bhattacherjee, “Prostaglandins and inflammatory reactions in the eye,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 2, no. 1, pp. 17–31, 1980.
[23]  A. F. de Vos, M. A. C. van Haren, C. Verhagen, R. Hoekzema, and A. Kijlstra, “Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 1100–1106, 1994.
[24]  A. Okumura, M. Mochizuki, M. Nishi, and C. P. Herbort, “Endotoxin-induced uveitis (EIU) in the rat: a study of inflammatory and immunological mechanisms,” International Ophthalmology, vol. 14, no. 1, pp. 31–36, 1990.
[25]  C. C. Chan, R. R. Caspi, M. Ni, et al., “Pathology of experimental autoimmune uveoretinitis in mice,” Journal of Autoimmunity, vol. 3, no. 3, pp. 247–255, 1990.
[26]  H. R. Jiang, L. Lumsden, and J. V. Forrester, “Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice,” Investigative Ophthalmology and Visual Science, vol. 40, no. 13, pp. 3177–3185, 1999.
[27]  L. Atalla, M. Linker-Israeli, L. Steinman, and N. A. Rao, “Inhibition of autoimmune uveitis by anti-CD4 antibody,” Investigative Ophthalmology and Visual Science, vol. 31, no. 7, pp. 1264–1270, 1990.
[28]  R. R. Caspi, C. C. Chan, Y. Fujino et al., “Recruitment of antigen-nonspecific cells plays a pivotal role in the pathogenesis of a T cell-mediated organ-specific autoimmune disease, experimental autoimmune uveoretinitis,” Journal of Neuroimmunology, vol. 47, no. 2, pp. 177–188, 1993.
[29]  A. K. Abbas, J. Lohr, and B. Knoechel, “Balancing autoaggressive and protective T cell responses,” Journal of Autoimmunity, vol. 28, no. 2-3, pp. 59–61, 2007.
[30]  E. S. Gragoudas, A. P. Adamis, E. T. Cunningham, et al., “Pegaptanib for neovascular age-related macular degeneration,” The New England Journal of Medicine, vol. 351, no. 27, pp. 2805–2816, 2004.
[31]  D. H. Anderson, R. F. Mullins, G. S. Hageman, and L. V. Johnson, “A role for local inflammation in the formation of drusen in the aging eye,” American Journal of Ophthalmology, vol. 134, no. 3, pp. 411–431, 2002.
[32]  L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. Hageman, “The role of inflammation in the pathogenesis of age-related macular degeneration,” Survey of Ophthalmology, vol. 51, no. 2, pp. 137–152, 2006.
[33]  K. Dastgheib and W. R. Green, “Granulomatous reaction to Bruch's membrane in age-related macular degeneration,” Archives of Ophthalmology, vol. 112, no. 6, pp. 813–818, 1994.
[34]  M. C. Killingsworth, J. P. Sarks, and S. H. Sarks, “Macrophages related to Bruch's membrane in age-related macular degeneration,” Eye, vol. 4, part 4, pp. 613–621, 1990.
[35]  P. L. Penfold, M. C. Killingsworth, and S. H. Sarks, “Senile macular degeneration: the involvement of immunocompetent cells,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 223, no. 2, pp. 69–76, 1985.
[36]  M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology, vol. 122, no. 4, pp. 598–614, 2004.
[37]  H. E. Grossniklaus, P. H. Miskala, W. R. Green et al., “Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7,” Archives of Ophthalmology, vol. 123, no. 7, pp. 914–921, 2005.
[38]  A. K. Hutchinson, H. E. Grossniklaus, and A. Z. Capone, “Giant-cell reaction in surgically excised subretinal neovascular membrane,” Archives of Ophthalmology, vol. 111, no. 6, pp. 734–735, 1993.
[39]  S. Seregard, P. V. Algvere, and L. Berglin, “Immunohistochemical characterization of surgically removed subfoveal fibrovascular membranes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 232, no. 6, pp. 325–329, 1994.
[40]  D. G. Espinosa-Heidmann, I. J. Suner, E. P. Hernandez, D. Monroy, K. G. Csaky, and S. W. Cousins, “Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3586–3592, 2003.
[41]  E. Sakurai, A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati, “Macrophage depletion inhibits experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3578–3585, 2003.
[42]  C. Tsutsumi, K. H. Sonoda, K. Egashira, et al., “The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization,” Journal of Leukocyte Biology, vol. 74, no. 1, pp. 25–32, 2003.
[43]  H. E. Grossniklaus, J. X. Ling, T. M. Wallace et al., “Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization,” Molecular Vision, vol. 8, pp. 119–126, 2002.
[44]  H. Oh, H. Takagi, C. Takagi et al., “The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 1891–1898, 1999.
[45]  N. N. Markomichelakis, P. G. Theodossiadis, and P. P. Sfikakis, “Regression of neovascular age-related macular degeneration following infliximab therapy,” American Journal of Ophthalmology,, vol. 139, no. 3, pp. 537–540, 2005.
[46]  X. Shi, I. Semkova, P. S. Muther, S. Della, N. Kocioka, and A. M. Joussena, “Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization,” Experimental Eye Research, vol. 83, no. 6, pp. 1325–1334, 2006.
[47]  R. F. Mullins, S. R. Russell, D. H. Anderson, et al., “Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease,” Journal of the Federation of American Societies for Experimental Biology, vol. 14, no. 7, pp. 835–846, 2000.
[48]  L. V. Johnson, W. P. Leitner, M. K. Staples, and D. H. Anderson, “Complement activation and inflammatory processes in drusen formation and age related macular degeneration,” Experimental Eye Research, vol. 73, no. 6, pp. 887–896, 2001.
[49]  M. Nozaki, B. J. Raisler, E. Sakurai et al., “Drusen complement components C3a and C5a promote choroidal neovascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2328–2333, 2006.
[50]  N. Yoshikawa, K. Noda, Y. Ozawa, K. Tsubota, Y. Mashima, and S. Ishida, “Blockade of vascular adhesion protein-1 attenuates choroidal neovascularization,” Molecular Vision, vol. 18, pp. 593–600, 2012.
[51]  N. Nagai, Y. Oike, K. Izumi-Nagai et al., “Angiotensin II type 1 receptor-mediated inflammation is required for choroidal neovascularization,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2252–2259, 2006.
[52]  T. Koto, N. Nagai, H. Mochimaru et al., “Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice,” Investigative Ophthalmology and Visual Science, vol. 48, no. 9, pp. 4328–4334, 2007.
[53]  T. C. Moore, J. E. Moore, Y. Kaji, et al., “The role of advanced glycation end products in retinal microvascular leukostasis,” Investigative Ophthalmology and Visual Science, vol. 44, no. 10, pp. 4457–4464, 2003.
[54]  M. J. Sheetz and G. L. King, “Molecular understanding of hyperglycemia’s adverse effects for diabetic complications,” Jama-Journal of the American Medical Association, vol. 288, no. 20, pp. 2579–2588, 2002.
[55]  D. A. Antonetti, A. J. Barber, and S. K. Bronsonetal, “Diabetic retinopathy: seeing beyond glucose-induced microvascular disease,” Diabetes, vol. 55, no. 9, pp. 2401–2411, 2006.
[56]  T. W. Gardner, D. A. Antonetti, A. J. Barber, K. F. LaNoue, and S. W. Levison, “Diabetic retinopathy: more than meets the eye,” Survey of Ophthalmology, vol. 47, supplement 2, pp. s253–s262, 2002.
[57]  R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Experimental Eye Research, vol. 77, no. 4, pp. 497–504, 2003.
[58]  A. M. Joussen, V. Poulaki, M. L. Le, et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” The FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004.
[59]  H. Tamura, K. Miyamoto, J. Kiryu et al., “Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1440–1444, 2005.
[60]  R. Kurkij?rvi, D. H. Adams, R. Leino, T. M?tt?nen, S. Jalkanen, and M. Salmi, “Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases,” Journal of Immunology, vol. 161, no. 3, pp. 1549–1557, 1998.
[61]  F. Boomsma, A. H. van den Meiracker, S. Winkel et al., “Circulating semicarbazide-sensitive amine oxidase is raised both in type I (insulin-dependent), in type II (non-insulin-dependent) diabetes mellitus and even in childhood type I diabetes at first clinical diagnosis,” Diabetologia, vol. 42, no. 2, pp. 233–237, 1999.
[62]  H. Garpenstrand, J. Ekblom, L. B. B?cklund, L. Oreland, and U. Rosenqvist, “Elevated plasma semicarbazide-sensitive amine oxidase (SSAO) activity in type 2 diabetes mellitus complicated by retinopathy,” Diabetic Medicine, vol. 16, no. 6, pp. 514–521, 1999.
[63]  S. Tohka, M. L. Laukkanen, S. Jalkanen, and M. Salmi, “Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo,” The FASEB Journal, vol. 15, no. 2, pp. 373–382, 2001.
[64]  M. Murata, K. Noda, J. Fukuhara, et al., “Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 53, no. 7, pp. 4055–4062, 2012.
[65]  T. Itoh, M. Tanioka, H. Yoshida, et al., “Reduced angiogenesis and tumor progression in gelatinase A-deficient mice,” Cancer Research, vol. 58, no. 5, pp. 1048–1051, 1998.
[66]  T. H. Vu, J. M. Shipley, G. Bergers, et al., “MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes,” Cell, vol. 93, pp. 411–422, 1998.
[67]  C. Forster-Horváth, B. D?me, S. Paku, et al., “Loss of vascular adhesion protein-1 expression in intratumoral microvessels of human skin melanoma,” Melanoma Research, vol. 14, no. 2, pp. 135–140, 2004.
[68]  K. F. Yoong, G. McNab, S. G. Hübscher, and D. H. Adams, “Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor- infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma,” Journal of Immunology, vol. 160, no. 8, pp. 3978–3988, 1998.
[69]  O. Kemik, A. Sümer, A. S. Kemik et al., “Human vascular adhesion protei{dotless}n-1 (VAP-1): serum levels for hepatocellular carcinoma in non-alcoholic and alcoholic fatty liver disease,” World Journal of Surgical Oncology, vol. 8, article 83, 2010.
[70]  H. Yasuda, Y. Toiyama, M. Ohi, Y. Mohri, C. Miki, and M. Kusunoki, “Serum soluble vascular adhesion protein-1 is a valuable prognostic marker in gastric cancer,” Journal of Surgical Oncology, vol. 103, no. 7, pp. 695–699, 2011.
[71]  J. Fukuhara, S. Kase, K. Noda, et al., “Immunolocalization of vascular adhesion protein-1 in human conjunctival tumors,” Ophthalmic Research, vol. 48, no. 1, pp. 33–37, 2012.
[72]  F. Marttila-Ichihara, K. Auvinen, K. Elima, S. Jalkanen, and M. Salmi, “Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1+CD11b+ myeloid cells into tumors,” Cancer Research, vol. 69, no. 19, pp. 7875–7883, 2009.
[73]  F. Marttila-Ichihara, K. Castermans, K. Auvinen et al., “Small-molecule inhibitors of vascular adhesion protein-1 reduce the accumulation of myeloid cells into tumors and attenuate tumor growth in mice,” Journal of Immunology, vol. 184, no. 6, pp. 3164–3173, 2010.
[74]  M. Salmi and S. Jalkanen, “Homing-associated molecules CD73 and VAP-1 as targets to prevent harmful inflammations and cancer spread,” FEBS Letters, vol. 585, no. 11, pp. 1543–1550, 2011.
[75]  D. Sun, S. Nakao, F. Xie, S. Zandi, A. Schering, and A. Hafezi-Moghadam, “Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers,” The FASEB Journal, vol. 24, no. 5, pp. 1532–1540, 2010.
[76]  F. Xie, D. Sun, A. Schering et al., “Novel molecular imaging approach for subclinical detection of iritis and evaluation of therapeutic success,” American Journal of Pathology, vol. 177, no. 1, pp. 39–48, 2010.
[77]  R. C. Garland, D. Sun, S. Zandi et al., “Noninvasive molecular imaging reveals role of PAF in leukocyte-endothelial interaction in LPS-induced ocular vascular injury,” The FASEB Journal, vol. 25, no. 4, pp. 1284–1294, 2011.
[78]  S. Nakao, K. Noda, S. Zandi et al., “VAP-1-mediated M2 macrophage infiltration underlies IL-1β- but not VEGF-A-induced lymph- and angiogenesis,” American Journal of Pathology, vol. 178, no. 4, pp. 1913–1921, 2011.
[79]  K. Jaakkola, T. Nikula, R. Holopainen, et al., “In vivo detection of vascular adhesion protein-1 in experimental inflammation,” American Journal of Pathology, vol. 157, no. 2, pp. 463–471, 2000.
[80]  T. Ujula, S. Salom?ki, P. Virsu et al., “Synthesis, 68Ga labeling and preliminary evaluation of DOTA peptide binding vascular adhesion protein-1: a potential PET imaging agent for diagnosing osteomyelitis,” Nuclear Medicine and Biology, vol. 36, no. 6, pp. 631–641, 2009.
[81]  E. Kivi, K. Elima, K. Aalto et al., “Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate,” Blood, vol. 114, no. 26, pp. 5385–5392, 2009.
[82]  K. Aalto, A. Autio, E. A. Kiss, et al., “Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer,” Blood, vol. 118, no. 13, pp. 3725–3733, 2011.
[83]  A. Autio, T. Henttinen, H. J. Sipil?, S. Jalkanen, and A. Roivainen, “Mini-PEG spacering of VAP-1-targeting 68Ga-DOTAVAP-P1 peptide improves PET imaging of inflammation,” EJNMMI Research, vol. 1, no. 1, p. 10, 2011.
[84]  P. R. Crocker, J. C. Paulson, and A. Varki, “Siglecs and their roles in the immune system,” Nature Reviews Immunology, vol. 7, no. 4, pp. 255–266, 2007.
[85]  A. Roivainen, S. Jalkanen, and C. Nanni, “Gallium-labelled peptides for imaging of inflammation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, supplement 1, pp. s68–s77, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413