全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HIV and Bone Disease: A Perspective of the Role of microRNAs in Bone Biology upon HIV Infection

DOI: 10.1155/2013/571418

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increased life expectancy and the need for long-term antiretroviral therapy have brought new challenges to the clinical management of HIV-infected individuals. The prevalence of osteoporosis and fractures is increased in HIV-infected patients; thus optimal strategies for risk management and treatment in this group of patients need to be defined. Prevention of bone loss is an important component of HIV care as the HIV population grows older. Understanding the mechanisms by which HIV infection affects bone biology leading to osteoporosis is crucial to delineate potential adjuvant treatments. This review focuses on HIV-induced osteoporosis within the context of microRNAs (miRNAs) by reviewing first basic concepts of bone biology as well as current knowledge of the role of miRNAs in bone development. Evidence that HIV-associated osteoporosis is in part independent of therapies employed to treat HIV (HAART) is supported by cross-sectional and longitudinal studies and is the focus of this review. 1. Introduction The emergence of human immunodeficiency virus (HIV) disease was initially reported in 1981 followed by the identification of the HIV as the cause of the disease in 1983. HIV is a global pandemic that has become the leading infectious disease killer of adults worldwide. In 2006, more than 65 million people had been infected with HIV worldwide and 25 million had died of HIV. In 2007, it was estimated that 33 million people were living with HIV with 2.7 million new infections and 2 million deaths each year. This has caused tremendous socioeconomic damage worldwide. In the USA, this condition afflicts the African American population in a disproportionate fashion although all racial and ethnic groups are afflicted [1]. There are new modalities of treatment including bone marrow transplantation [2], the “Berlin Patient” receiving transplantation with cells conferring HIV resistance [3], and members of the Visconti cohort who seem to be free of HIV infection after stopping antiretroviral therapy [4]. However, all of the above-mentioned modalities of treatment are raising complex ethical issues [5], and it will take years before being fully implemented if approved. Among individuals living with HIV, the proportion of deaths attributed to chronic noninfectious comorbid diseases has increased over the past 15 years. This is partly a result of increased longevity in the area of highly active antiretroviral therapy (HAART) and also because HIV infection is related, causally or otherwise, to several chronic conditions. These comorbidities include conditions that

References

[1]  Division of HIV/AIDS Prevention, CDC, National Center for HIV/AIDS VH, STD and TB Prevention, HIV in the United States: At a Glance, 2012.
[2]  D. G. McNeil Jr., “After marrow transplants, 2 more patients appear H.I.V.-free without drugs,” New York Times, July 2013, http://www.nytimes.com/2013/07/04/health/post-transplant-and-off-drugs-hiv-patients-are-apparently-virus-free.html?_r=1.
[3]  G. Hutter, D. Nowak, M. Mossner et al., “Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation,” The New England Journal of Medicine, vol. 360, no. 7, pp. 692–698, 2009.
[4]  A. Saez-Cirion, C. Bacchus, L. Hocqueloux, et al., “Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study,” PLoS Pathogens, vol. 9, no. 3, Article ID e1003211, 2013.
[5]  J. Sugarman, “HIV cure research: expanding the ethical considerations,” Annals of Internal Medicine, 2013.
[6]  B. Peters, F. Post, A. Wierzbicki, et al., “Screening for chronic comorbid diseases in people with HIV: the need for a strategic approach,” HIV Medicine, vol. 14, supplement 1, pp. 1–11, 2013.
[7]  B. Stone, D. Dockrell, C. Bowman, and E. McCloskey, “HIV and bone disease,” Archives of Biochemistry and Biophysics, vol. 503, no. 1, pp. 66–77, 2010.
[8]  R. Guerri-Fernandez, P. Vestergaard, C. Carbonell, et al., “HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study,” Journal of Bone and Mineral Research, vol. 28, no. 6, pp. 1259–1263, 2013.
[9]  A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991.
[10]  A. Yamaguchi, T. Komori, and T. Suda, “Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1,” Endocrine Reviews, vol. 21, no. 4, pp. 393–411, 2000.
[11]  Y.-L. Li and Z.-S. Xiao, “Advances in Runx2 regulation and its isoforms,” Medical Hypotheses, vol. 68, no. 1, pp. 169–175, 2006.
[12]  L. Tou, N. Quibria, and J. M. Alexander, “Transcriptional regulation of the human Runx2/Cbfa1 gene promoter by bone morphogenetic protein-7,” Molecular and Cellular Endocrinology, vol. 205, no. 1-2, pp. 121–129, 2003.
[13]  E.-J. Jeon, K.-Y. Lee, N.-S. Choi et al., “Bone morphogenetic protein-2 stimulates Runx2 acetylation,” Journal of Biological Chemistry, vol. 281, no. 24, pp. 16502–16511, 2006.
[14]  G. Mbalaviele, S. Sheikh, J. P. Stains et al., “β-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation,” Journal of Cellular Biochemistry, vol. 94, no. 2, pp. 403–418, 2005.
[15]  K. M. Sinha and X. Zhou, “Genetic and molecular control of osterix in skeletal formation,” Journal of Cellular Biochemistry, vol. 114, no. 5, pp. 975–984, 2013.
[16]  B. L. M. Hogan, “Bone morphogenetic proteins: multifunctional regulators of vertebrate development,” Genes and Development, vol. 10, no. 13, pp. 1580–1594, 1996.
[17]  J. Massague, “How cells read TGF-beta signals,” Nature Reviews Molecular Cell Biology, vol. 1, pp. 169–178, 2000.
[18]  J. Massagué and Y.-G. Chen, “Controlling TGF-β signaling,” Genes and Development, vol. 14, no. 6, pp. 627–644, 2000.
[19]  K. Miyazono, P. ten Dijke, and C.-H. Heldin, “TGF-β signaling by Smad proteins,” Advances in Immunology, vol. 75, pp. 115–157, 2000.
[20]  X. Wang, H.-Y. Kua, Y. Hu et al., “p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling,” Journal of Cell Biology, vol. 172, no. 1, pp. 115–125, 2006.
[21]  A. Nohe, E. Keating, P. Knaus, and N. O. Petersen, “Signal transduction of bone morphogenetic protein receptors,” Cellular Signalling, vol. 16, no. 3, pp. 291–299, 2004.
[22]  C. A. Gregory, D. J. Prockop, and J. L. Spees, “Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation,” Experimental Cell Research, vol. 306, no. 2, pp. 330–335, 2005.
[23]  M. E. Nuttall and J. M. Gimble, “Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications,” Current Opinion in Pharmacology, vol. 4, no. 3, pp. 290–294, 2004.
[24]  P. Meunier, J. Aaron, C. Edouard, and G. Vignon, “Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies,” Clinical Orthopaedics and Related Research, vol. 80, pp. 147–154, 1971.
[25]  C. Hartmann, “A Wnt canon orchestrating osteoblastogenesis,” Trends in Cell Biology, vol. 16, no. 3, pp. 151–158, 2006.
[26]  T. P. Hill, D. Sp?ter, M. M. Taketo, W. Birchmeier, and C. Hartmann, “Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes,” Developmental Cell, vol. 8, no. 5, pp. 727–738, 2005.
[27]  T. F. Day, X. Guo, L. Garrett-Beal, and Y. Yang, “Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis,” Developmental Cell, vol. 8, no. 5, pp. 739–750, 2005.
[28]  H. Hu, M. J. Hilton, X. Tu, K. Yu, D. M. Ornitz, and F. Long, “Sequential roles of Hedgehog and Wnt signaling in osteoblast development,” Development, vol. 132, no. 1, pp. 49–60, 2005.
[29]  D. A. Glass II, P. Bialek, J. D. Ahn et al., “Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation,” Developmental Cell, vol. 8, no. 5, pp. 751–764, 2005.
[30]  S. L. Holmen, C. R. Zylstra, A. Mukherjee et al., “Essential role of β-catenin in postnatal bone acquisition,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21162–21168, 2005.
[31]  A. Jackson, B. Vayssière, T. Garcia et al., “Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells,” Bone, vol. 36, no. 4, pp. 585–598, 2005.
[32]  G. J. Spencer, J. C. Utting, S. L. Etheridge, T. R. Arnett, and P. G. Genever, “Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro,” Journal of Cell Science, vol. 119, no. 7, pp. 1283–1296, 2006.
[33]  C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004.
[34]  A. J. van Wijnen, J. van de Peppel, J. P. van Leeuwen, et al., “MicroRNA functions in osteogenesis and dysfunctions in osteoporosis,” Current Osteoporosis Reports, vol. 11, no. 2, pp. 72–82, 2013.
[35]  Y. Gong, R. B. Slee, N. Fukai et al., “LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development,” Cell, vol. 107, no. 4, pp. 513–523, 2001.
[36]  G. Karsenty and E. F. Wagner, “Reaching a genetic and molecular understanding of skeletal development,” Developmental Cell, vol. 2, no. 4, pp. 389–406, 2002.
[37]  W. J. Boyle, W. S. Simonet, and D. L. Lacey, “Osteoclast differentiation and activation,” Nature, vol. 423, no. 6937, pp. 337–342, 2003.
[38]  H. Hsu, D. L. Lacey, C. R. Dunstan et al., “Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3540–3545, 1999.
[39]  T. C. A. Phan, J. Xu, and M. H. Zheng, “Interaction between osteoblast and osteoclast: impact in bone disease,” Histology and Histopathology, vol. 19, no. 4, pp. 1325–1344, 2004.
[40]  K. Fuller, B. Wong, S. Fox, Y. Choi, and T. J. Chambers, “TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts,” Journal of Experimental Medicine, vol. 188, no. 5, pp. 997–1001, 1998.
[41]  T. Sugatani and K. A. Hruska, “Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis,” Journal of Cellular Biochemistry, vol. 114, no. 6, pp. 1217–1222, 2013.
[42]  M. Q. Hassan, Y. Maeda, H. Taipaleenmaki, et al., “miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells,” The Journal of Biological Chemistry, vol. 287, no. 50, pp. 42084–42092, 2012.
[43]  P. Cheng, C. Chen, H. B. He, et al., “miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B,” Journal of Bone and Mineral Research, vol. 28, no. 5, pp. 1180–1190, 2013.
[44]  B. R. Troen, “Molecular mechanisms underlying osteoclast formation and activation,” Experimental Gerontology, vol. 38, no. 6, pp. 605–614, 2003.
[45]  L. C. Hofbauer, S. Khosla, C. R. Dunstan, D. L. Lacey, T. C. Spelsberg, and B. L. Riggs, “Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells,” Endocrinology, vol. 140, no. 9, pp. 4367–4370, 1999.
[46]  S. Khosla, E. J. Atkinson, C. R. Dunstan, and W. M. O'Fallon, “Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1550–1554, 2002.
[47]  N. K. Shevde, A. C. Bendixen, K. M. Dienger, and J. W. Pike, “Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7829–7834, 2000.
[48]  S. Srivastava, G. Toraldo, M. N. Weitzmann, S. Cenci, F. P. Ross, and R. Pacifici, “Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation,” Journal of Biological Chemistry, vol. 276, no. 12, pp. 8836–8840, 2001.
[49]  S. Srivastava, M. N. Weitzmann, S. Cenci, F. P. Ross, S. Adler, and R. Pacifici, “Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD,” The Journal of Clinical Investigation, vol. 104, no. 4, pp. 503–513, 1999.
[50]  M. Zaidi, H. C. Blair, B. S. Moonga, E. Abe, and C. L.-H. Huang, “Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics,” Journal of Bone and Mineral Research, vol. 18, no. 4, pp. 599–609, 2003.
[51]  V. Ambros and X. Chen, “The regulation of genes and genomes by small RNAs,” Development, vol. 134, no. 9, pp. 1635–1641, 2007.
[52]  B. R. Cullen, “Transcription and processing of human microRNA precursors,” Molecular Cell, vol. 16, no. 6, pp. 861–865, 2004.
[53]  I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005.
[54]  Y. Lee, K. Jeon, J.-T. Lee, S. Kim, and V. N. Kim, “MicroRNA maturation: stepwise processing and subcellular localization,” The EMBO Journal, vol. 21, no. 17, pp. 4663–4670, 2002.
[55]  M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001.
[56]  Y. Mizuno, Y. Tokuzawa, Y. Ninomiya et al., “miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b,” FEBS Letters, vol. 583, no. 13, pp. 2263–2268, 2009.
[57]  Y. Mizuno, K. Yagi, Y. Tokuzawa et al., “miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation,” Biochemical and Biophysical Research Communications, vol. 368, no. 2, pp. 267–272, 2008.
[58]  E. Luzi, F. Marini, S. C. Sala, I. Tognarini, G. Galli, and M. L. Brandi, “Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor,” Journal of Bone and Mineral Research, vol. 23, no. 2, pp. 287–295, 2008.
[59]  Z. Li, M. Q. Hassan, S. Volinia et al., “A microRNA signature for a BMP2-induced osteoblast lineage commitment program,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 13906–13911, 2008.
[60]  J. Huang, L. Zhao, L. Xing, and D. Chen, “MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation,” Stem Cells, vol. 28, no. 2, pp. 357–364, 2010.
[61]  K. Kapinas, C. B. Kessler, and A. M. Delany, “miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 216–224, 2009.
[62]  T. Itoh, Y. Nozawa, and Y. Akao, “MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19272–19279, 2009.
[63]  H. Li, H. Xie, W. Liu et al., “A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans,” The Journal of Clinical Investigation, vol. 119, no. 12, pp. 3666–3677, 2009.
[64]  R. Hu, W. Liu, H. Li et al., “A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation,” Journal of Biological Chemistry, vol. 286, no. 14, pp. 12328–12339, 2011.
[65]  M. Mori, H. Nakagami, G. Rodriguez-Araujo, K. Nimura, and Y. Kaneda, “Essential role for miR-196a in brown adipogenesis of white fat progenitor cells,” PLoS Biology, vol. 10, no. 4, Article ID e1001314, 2012.
[66]  M. Tomé, P. López-Romero, C. Albo et al., “miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells,” Cell Death and Differentiation, vol. 18, no. 6, pp. 985–995, 2011.
[67]  J. Zhang, Q. Tu, L. F. Bonewald et al., “Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1,” Journal of Bone and Mineral Research, vol. 26, no. 8, pp. 1953–1963, 2011.
[68]  A. M. Schaap-Oziemlak, R. A. Raymakers, S. M. Bergevoet et al., “MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells,” Stem Cells and Development, vol. 19, no. 6, pp. 877–885, 2010.
[69]  Z. Li, M. Q. Hassan, M. Jafferji et al., “Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation,” Journal of Biological Chemistry, vol. 284, no. 23, pp. 15676–15684, 2009.
[70]  T. Eskildsen, H. Taipaleenm?ki, J. Stenvang et al., “MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 15, pp. 6139–6144, 2011.
[71]  J.-F. Zhang, W.-M. Fu, M.-L. He et al., “MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling,” RNA Biology, vol. 8, no. 5, pp. 829–838, 2011.
[72]  J.-F. Zhang, W.-M. Fu, M.-L. He et al., “MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix,” Molecular Biology of the Cell, vol. 22, no. 21, pp. 3955–3961, 2011.
[73]  S. K. Laine, J. J. Alm, S. P. Virtanen, H. T. Aro, and T. K. Laitala-Leinonen, “MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 113, no. 8, pp. 2687–2695, 2012.
[74]  S. Suomi, H. Taipaleenm?ki, A. Sepp?nen et al., “MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells,” Gene Regulation and Systems Biology, vol. 2, pp. 177–191, 2008.
[75]  T. Sugatani, J. Vacher, and K. A. Hruska, “A microRNA expression signature of osteoclastogenesis,” Blood, vol. 117, no. 13, pp. 3648–3657, 2011.
[76]  L. Y. Zhu, C. Qiu, J. X. Lv, and J. Q. Xu, “HIV-1 infection changes miRNA expression profile in the whole blood,” Bing Du Xue Bao, vol. 29, no. 3, pp. 323–329, 2013.
[77]  M. H. G. P. Raaijmakers, S. Mukherjee, S. Guo et al., “Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia,” Nature, vol. 464, no. 7290, pp. 852–857, 2010.
[78]  T. Sugatani and K. A. Hruska, “Impaired micro-RNA pathways diminish osteoclast differentiation and function,” Journal of Biological Chemistry, vol. 284, no. 7, pp. 4667–4678, 2009.
[79]  T. Sugatani and K. A. Hruska, “MicroRNA-223 is a key factor in osteoclast differentiation,” Journal of Cellular Biochemistry, vol. 101, no. 4, pp. 996–999, 2007.
[80]  Y. Wang, L. Li, B. T. Moore et al., “Mir-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis,” PLoS ONE, vol. 7, no. 4, Article ID e34641, 2012.
[81]  M. T. Yin, C. A. Zhang, D. J. McMahon et al., “Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 2, pp. 554–562, 2012.
[82]  C. Cazanave, M. Dupon, V. Lavignolle-Aurillac et al., “Reduced bone mineral density in HIV-infected patients: prevalence and associated factors,” AIDS, vol. 22, no. 3, pp. 395–402, 2008.
[83]  M. Yin, J. Dobkin, K. Brudney et al., “Bone mass and mineral metabolism in HIV+ postmenopausal women,” Osteoporosis International, vol. 16, no. 11, pp. 1345–1352, 2005.
[84]  S. Jones, D. Restrepo, A. Kasowitz et al., “Risk factors for decreased bone density and effects of HIV on bone in the elderly,” Osteoporosis International, vol. 19, no. 7, pp. 913–918, 2008.
[85]  A. Carr, J. Miller, J. A. Eisman, and D. A. Cooper, “Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy,” AIDS, vol. 15, no. 6, pp. 703–709, 2001.
[86]  C. Amiel, A. Ostertag, L. Slama et al., “BMD is reduced in HIV-infected men irrespective of treatment,” Journal of Bone and Mineral Research, vol. 19, no. 3, pp. 402–409, 2004.
[87]  K. Mondy, K. Yarasheski, W. G. Powderly et al., “Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals,” Clinical Infectious Diseases, vol. 36, no. 4, pp. 482–490, 2003.
[88]  D. Gibellini, E. de Crignis, C. Ponti et al., “HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFα activation,” Journal of Medical Virology, vol. 80, no. 9, pp. 1507–1514, 2008.
[89]  V. Amorosa and P. Tebas, “Bone disease and HIV infection,” Clinical Infectious Diseases, vol. 42, no. 1, pp. 108–114, 2006.
[90]  G. Pan, M. Kilby, and J. M. McDonald, “Modulation of osteoclastogenesis induced by nucleoside reverse transcriptase inhibitors,” AIDS Research and Human Retroviruses, vol. 22, no. 11, pp. 1131–1141, 2006.
[91]  D. Gibellini, M. Borderi, E. de Crignis et al., “RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men,” Journal of Medical Virology, vol. 79, no. 10, pp. 1446–1454, 2007.
[92]  S. Wei, H. Kitaura, P. Zhou, F. Patrick Ross, and S. L. Teitelbaum, “IL-1 mediates TNF-induced osteoclastogenesis,” The Journal of Clinical Investigation, vol. 115, no. 2, pp. 282–290, 2005.
[93]  J. M. Fakruddin and J. Laurence, “HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk,” Journal of Biological Chemistry, vol. 278, no. 48, pp. 48251–48258, 2003.
[94]  J. M. Fakruddin and J. Laurence, “HIV-1 Vpr enhances production of receptor of activated NF-κB ligand (RANKL) via potentiation of glucocorticoid receptor activity,” Archives of Virology, vol. 150, no. 1, pp. 67–78, 2005.
[95]  J.-P. Herbeuval, A. Boasso, J.-C. Grivel et al., “TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitro production by antigen-presenting cells,” Blood, vol. 105, no. 6, pp. 2458–2464, 2005.
[96]  Y. Yang, I. Tikhonov, T. J. Ruckwardt et al., “Monocytes treated with human immunodeficiency virus Tat kill uninfected CD4+ cells by a tumor necrosis factor-related apoptosis-induced ligand-mediated mechanism,” Journal of Virology, vol. 77, no. 12, pp. 6700–6708, 2003.
[97]  B. R. Wong, D. Besser, N. Kim et al., “TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src,” Molecular Cell, vol. 4, no. 6, pp. 1041–1049, 1999.
[98]  G. Pan, Z. Yang, S. W. Ballinger, and J. M. McDonald, “Pathogenesis of osteopenia/osteoporosis induced by highly active anti-retroviral therapy for AIDS,” Annals of the New York Academy of Sciences, vol. 1068, no. 1, pp. 297–308, 2006.
[99]  L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A ceRNA hypothesis: the rosetta stone of a hidden RNA language?” Cell, vol. 146, no. 3, pp. 353–358, 2011.
[100]  S. T. Chang, P. Sova, X. Peng et al., “Next-generation sequencing reveals HIV-1-mediated suppression of T cell activation and RNA processing and regulation of noncoding RNA expression in a CD4+ T cell line,” mBio, vol. 2, no. 5, 2011.
[101]  A. T. Navare, P. Sova, D. E. Purdy et al., “Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: protein synthesis, cell proliferation, and T-cell activation,” Virology, vol. 429, no. 1, pp. 37–46, 2012.
[102]  M. L. Yeung, Y. Bennasser, T. G. Myers, G. Jiang, M. Benkirane, and K.-T. Jeang, “Changes in microRNA expression profiles in HIV-1-transfected human cells,” Retrovirology, vol. 2, article 81, 2005.
[103]  L. Houzet, M. L. Yeung, V. de Lame, D. Desai, S. M. Smith, and K.-T. Jeang, “MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals,” Retrovirology, vol. 5, article 118, 2008.
[104]  S. T. Chang, M. J. Thomas, P. Sova, R. R. Green, R. E. Palermo, and M. G. Katze, “Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection,” mBio, vol. 4, no. 1, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133