全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil

DOI: 10.1155/2013/685193

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigated the presence and antibiotic resistance of Salmonella spp. in a shrimp farming environment in Northeast Region of Brazil. Samples of water and sediments from two farms rearing freshwater-acclimated Litopenaeus vannamei were examined for the presence of Salmonella. Afterwards, Salmonella isolates were serotyped, the antimicrobial resistance was determined by a disk diffusion method, and the plasmid curing was performed for resistant isolates. A total of 30 (16.12%) of the 186 isolates were confirmed to be Salmonella spp., belonging to five serovars: S. serovar Saintpaul, S. serovar Infantis, S. serovar Panama, S. serovar Madelia, and S. serovar Braenderup, along with 2 subspecies: S. enterica serovar houtenae and S. enterica serovar enterica. About twenty-three percent of the isolates were resistant to at least one antibiotic, and twenty percent were resistant to at least two antibiotics. Three strains isolated from water samples (pond and inlet canal) exhibited multiresistance to ampicillin, tetracycline, oxytetracycline, and nitrofurantoin. One of them had a plasmid with genes conferring resistance to nitrofurantoin and ampicillin. The incidence of bacteria pathogenic to humans in a shrimp farming environment, as well as their drug-resistance pattern revealed in this study, emphasizes the need for a more rigorous attention to this area. 1. Introduction The growing demand for shrimp on the international market has boosted inland shrimp farming over the past decades. Marine shrimp culture located miles away from the ocean is a new and fast growing sector of aquaculture [1]. However, shrimp farmed in both salt water and freshwater are becoming increasingly vulnerable to bacterial infection due to the ease with which pathogens are transmitted in aquaculture [2]. As a result, many farmers have made improper use of antibiotics to prevent or treat infections, leading to the dissemination of antimicrobial-resistant strains in aquatic environments [3]. The increase in the incidence of antimicrobial-resistant strains is also associated with the presence of plasmids containing resistance genes, providing microbiological populations with a greater genetic flexibility and allowing them to adapt and survive in hostile environments [4]. The addition of antibiotics to shrimp fodder for prophylaxis, treatment of infections, or growth stimulation has contributed to the perpetuation of resistant and pathogenic strains as well [5]. Shrimp farm workers are not only regularly exposed to antibiotics as these are mixed with the fodder, but they are also

References

[1]  N. Bhaskar, T. M. Setty, G. V. Reddy et al., “Incidence of Salmonella in cultured shrimp Penaeus monodon,” Aquaculture, vol. 138, no. 1-4, pp. 257–266, 1995.
[2]  M. Boaventura, A. Canuto, and A. Ferreira, “Novas diretrizes no cultivo de camar?o cinza Litopenaeus vannamei para o controle das enfermidades,” Revista Aquicultura & Pesca, vol. 17, pp. 25–28, 2006.
[3]  S. Harakeh, H. Yassine, and M. El-Fadel, “Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments,” Environmental Pollution, vol. 143, no. 2, pp. 269–277, 2006.
[4]  A. M. S. Cardonha, R. H. S. F. Vieira, H. N. Holland, J. L. S. Melo, M. A. S. Bezerra, and K. S. F. S. C. Damasceno, “Monitoramento da Polui??o da água das galerias pluviais e do mar por meio de avalia??o físico-química e microbiológicas,” Arquivo de Ciencias do Mar, vol. 38, pp. 43–48, 2005.
[5]  P. S. A. Pinto, “Aspectos sanitários da Salmonelose como uma zoonose,” Higiene Alimentar, vol. 14, pp. 39–43, 2000.
[6]  CDC, Salmonella Surveillance, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 1996.
[7]  CDC, “National Antimicrobial Monitoring System,” Annual Report, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 1996.
[8]  H. A. Wallace and T. S. Hammack, “Salmonella,” in U.S. Food and Drugs Administration, Center for Food Safety & Applied Nutrition. Bacteriological Analytical Manual, FDA/CFSAN, 2005, http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070149.htm.
[9]  L. Le Minor and M. Y. Popoff, “Designation of Salmonella enteric sp. nov. nom.rev.as the type and only species of the genus Salmonella,” International Journal of Systematic Bacteriology, vol. 37, pp. 465–468, 1987.
[10]  A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966.
[11]  CLSI-Clinical and Laboratory Standards Institute, “Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement M100-S19,” Tech. Rep. 26, 2010.
[12]  A. Molina-Aja, A. García-Gasca, A. Abreu-Grobois, C. Bolán-Mejía, A. Roque, and B. Gomez-Gil, “Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured penaeid shrimp,” FEMS Microbiology Letters, vol. 213, no. 1, pp. 7–12, 2002.
[13]  L. S. Parente, R. A. Costa, G. H. F. Vieira et al., “Bactérias entéricas presentes em amostras de água e camar?o marinho Litopenaeus vannamei oriundos de fazendas de cultivo no Estado do Ceará, Brasil,” Brazilian Journal of Veterinary Research and Animal Science, vol. 48, pp. 46–53, 2011.
[14]  F. C. T. Carvalho, N. S. Evangelista-Barreto, C. M. F. Reis, E. Hofer, and R. H. S. F. Vieira, “Susceptibilidade antimicrobiana de Salmonella spp. isoladas de fazendas de carciniculturas no Estado do Ceará,” Revista Ciencias Agronomica, vol. 40, pp. 549–556, 2009.
[15]  M. C. B. Figueiredo, L. F. P. Araújo, R. B. Gomes, and M. F. Rosa, “Impactos ambientais do lan?amento de efluentes da carcinicultura em águas interiores,” Engenharia Sanitária e Ambiental, vol. 10, pp. 167–174, 2005.
[16]  R. V. Ribeiro, E. M. F. Reis, C. M. F. Reis, A. C. Freitas Almeida, and D. P. Rodrigues, “Incidence and antimicrobial resistance of enteropathogens isolated from an integrated aquaculture system,” Letters in Applied Microbiology, vol. 51, no. 6, pp. 611–618, 2010.
[17]  P. J. A. Reilly, D. R. Twiddy, and R. S. Fuchs, “Review on the occurrence of Salmonella in cultured tropical shrimp,” FAO Fisheries Circular, vol. 851, p. 19, 1992.
[18]  L. O. Brito, W. M. Costa, and A. Oliveira, “Importancia da Fertiliza??o em Viveiros de Camar?o Marinho,” Revista Panorama da Aquicultura, vol. 8, pp. 35–37, 2006.
[19]  E. Hofer and S. J. Silva, “Sorovares de Salmonella isolados de matérias-primas e de ra??o para aves no Brasil,” Pesquisa Veterinária Brasileira, vol. 18, pp. 21–27, 1998.
[20]  Brazil—Ministério da Saúde, “Secretaria de Vigilancia em Saúde,” Vigilancia Epidemiológica da Febre Tifóide, 2009, http://portal.saude.gov.br/portal/arquivos/pdf/febre_tifoide.pdf.
[21]  E. M. Silva and A. Duarte, “Salmonella Enteritidis em aves: retrospectiva no Brasil,” Revista Brasileira Ciencias Avicultura, vol. 4, pp. 85–100, 2002.
[22]  J. L. Balcázar, I. D. Blas, I. Ruiz-Zarzuela, D. Cunningham, D. Vendrell, and J. L. Múzquiz, “The role of probiotics in aquaculture,” Veterinary Microbiology, vol. 114, no. 3-4, pp. 173–186, 2006.
[23]  R. Helena Rebou?as, O. Viana de Sousa, A. Sousa Lima, F. Roger Vasconcelos, P. B. de Carvalho, and R. H. S. dos Fernandes Vieira, “Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceará, Brazil,” Environmental Research, vol. 111, no. 1, pp. 21–24, 2011.
[24]  F. C. Cabello, “Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment,” Environmental Microbiology, vol. 8, no. 7, pp. 1137–1144, 2006.
[25]  Brazil—Ministério da Agricultura e do Abastecimento, “Secretaria de Defesa Agropecuária,” Instru??o Normativa No 9, DE 27 de junho de 2003. Publicado no Diário Oficial da Uni?o de 30/06/2003, Se??o 1, Página 4.
[26]  A. C. Nogueira-Lima, T. C. V. Gesteira, and J. Mafezoli, “Oxytetracycline residues in cultivated marine shrimp (Litopenaeus vannamei Boone, 1931) (Crustacea, Decapoda) submitted to antibiotic treatment,” Aquaculture, vol. 254, no. 1–4, pp. 748–757, 2006.
[27]  B. T. Lunestadt and J. Goksoyr, “Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium,” Diseases of Aquatic Organisms, vol. 9, pp. 67–72, 1990.
[28]  L. Lambs, M. Brion, and G. Berthon, “Metal ion-tetracycline interactions in biological fluids. III. Formation of mixed-metal ternary complexes of tetracycline, oxytetracycline, doxycycline and minocycline with calcium and magnesium, and their involvement in the bioavailability of these antibiotics in blood plasma,” Agents and Actions, vol. 14, no. 5-6, pp. 743–750, 1984.
[29]  FAO, “Responsible use of antibiotics in aquaculture,” Paper 469, Food and Agriculture Organization of the United Nations, 2005.
[30]  F. R. Miranda, R. N. Lima, L. A. Crisóstomo, and M. G. S. Santana, “Reuse of inland low-sal inity shrimp far m effluent for melon irrigation,” Aquacultural Engineering, vol. 39, pp. 1–5, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133