全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Commercial Cyanobacteria Products on the Growth and Antagonistic Ability of Some Bioagents under Laboratory Conditions

DOI: 10.1155/2013/838329

Full-Text   Cite this paper   Add to My Lib

Abstract:

Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. 1. Introduction Several commercially available products have shown significant disease reduction through various mechanisms to reduce pathogen development and disease. Different approaches may be used to prevent, mitigate, or control plant diseases. Beyond good agronomic and horticultural practices, growers often rely heavily on chemical fertilizers and pesticides. Such inputs to agriculture have contributed significantly to the spectacular improvements in crop productivity and quality over the past 100 years. However, the environmental pollution caused by excessive use and misuse of agrochemicals, as well as fear-mongering by some opponents of pesticides, has led to considerable changes in people’s attitudes towards the use of pesticides in agriculture. Application of biological control using antagonistic microorganisms has proved to be successful for controlling various plant diseases [1]. However, it is still not easy and costly in application. It can serve as the best control measure under green-house conditions. The concern of pesticide use with respect to human health and environment has brought increasing interest in alternatives by avoiding negative effects on the environment. Today, there are strict regulations on chemical pesticide use, and there is political pressure to remove the most hazardous chemicals from the market. Recently algal are one of the chief biological agents that have been studied for the control of plant pathogenic fungi, particularly soil-borne disease [2]. For example, cyanobacteria (blue-green

References

[1]  A. Sivan, “Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions,” Plant Disease, vol. 71, pp. 587–592, 1987.
[2]  M. A. Hewedy, M. M. H. Rahhal, and I. A. Ismail, “Pathological studies on soybean damping-off disease,” Egyptian Journal of Applied Sciences, vol. 15, pp. 88–102, 2000.
[3]  M. M. Kulik, “The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi,” European Journal of Plant Pathology, vol. 101, no. 6, pp. 585–599, 1995.
[4]  I. Schlegel, N. T. Doan, N. De Chazal, and G. D. Smith, “Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria,” Journal of Applied Phycology, vol. 10, no. 5, pp. 471–479, 1998.
[5]  R. Bonjouklian, T. A. Smitka, L. E. Doolin et al., “Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis,” Tetrahedron, vol. 47, no. 37, pp. 7739–7750, 1991.
[6]  J. Kiviranta, A. Abdel-Hameed, K. Sivonen, S. I. Niemela, and G. Carlberg, “Toxicity of cyanobacteria to mosquito larvae-screening of active compounds,” Environmental Toxicology and Water Quality, vol. 8, no. 1, pp. 63–71, 1993.
[7]  W. P. Frankmolle, L. K. Larsen, F. R. Caplan et al., “Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. Isolation and biological properties,” Journal of Antibiotics, vol. 45, no. 9, pp. 1451–1457, 1992.
[8]  R. E. Moore, G. M. L. Patterson, J. S. Myndrese, J. Barchi Jr., and T. R. Norton, “Toxins from cyanophyte belonging to the Scytonematoceae,” Pure and Applied Chemistry, vol. 58, pp. 263–271, 1986.
[9]  A. Chetsumon, K. Fujieda, K. Hirata, K. Yagi, and Y. Miura, “Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam,” Journal of Applied Phycology, vol. 5, no. 6, pp. 615–622, 1993.
[10]  S. Bloor and R. R. England, “Antibiotic production by the cyanobacterium Nostoc muscorum,” Journal of Applied Phycology, vol. 1, no. 4, pp. 367–372, 1989.
[11]  N. S. El-Mougy, M. M. Abdel-Kader, F. A. Abdel-Kareem, E. I. Embaby, R. El-Mohamady, and H. Abd El-Khair, “Survey of fungal diseases affecting some vegetable crops and their rhizospheric soilborne microorganisms grown under protected cultivation system in Egypt,” Research Journal of Agriculture and Biological Sciences, vol. 7, no. 2, pp. 203–211, 2011.
[12]  N. S. El-Mougy, F. A. Abd-El-kareem, N. G. El-Gamal, and Y. O. Fotouh, “Application of fungicides alternatives for controlling cowpea root rot disease under greenhouse and field conditions,” Egyptian Journal of Phytopathology, vol. 32, no. 1-2, pp. 23–35, 2004.
[13]  M. A. Abd-Alla, N. S. El-Mougy, and N. G. El-Gamal, “Formulation of essential oils and yeast for controlling postharvest decay of tomato fruits,” Plant Pathology Bulletin, vol. 18, pp. 23–33, 2009.
[14]  S. Piano, V. Neyrotti, Q. Migheli, and M. L. Gullino, “Biocontrol capability of Metschnikowia pulcherrima against Botrytis postharvest rot of apple,” Postharvest Biology and Technology, vol. 11, no. 3, pp. 131–140, 1997.
[15]  J. H. S. Ferreira, F. N. Matthee, and A. C. Thomas, “Biological control of Eutypa lata on Grapevine by an antagonistic strain of Bacillus subtilis,” Phytopathology, vol. 81, pp. 283–287, 1991.
[16]  SAS, Statistical Analysis System. User's Guide: Statistics (PC-DoS 6. 04), SAS Institute Inc., Cary, NC, USA, 1988.
[17]  J. Neler, W. Wassermann, and M. H. Kutner, “Applied linear statistical models,” in Regression Analysis of Variance and Experimental Design, D. Richard, Ed., pp. 117–155, Irwin Inc., Homewood, Ill, USA, 2nd edition, 1985.
[18]  N. Biondi, R. Piccardi, M. C. Margheri, L. Rodolfi, G. D. Smith, and M. R. Tredici, “Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides,” Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3313–3320, 2004.
[19]  Z. Khan, Y. H. Kim, S. G. Kim, and H. W. Kim, “Observations on the suppression of root-knot nematode (Meloidogyne arenaria) on tomato by incorporation of cyanobacterial powder (Oscillatoria chlorina) into potting field soil,” Bioresource Technology, vol. 98, no. 1, pp. 69–73, 2007.
[20]  E. Z. Khalifa, Z. El-Shenawy, and H. M. Awad, “Biological control of damping-off and root-rot of sugar beet,” Egyptian Journal of Phytopathology, vol. 23, pp. 39–51, 1995.
[21]  J. A. Lewis, R. D. Lumsden, and J. C. Locke, “Biocontrol of damping-off diseases caused by Rhizoctonia solani and Pythium ultimum with alginate prills of Gliocladium virens, Trichoderma hamatum and various food bases,” Biocontrol Science and Technology, vol. 6, no. 2, pp. 163–173, 1996.
[22]  T. B. Sutton, “Changing options for the control of deciduous fruit tree diseases,” Annual Review of Phytopathology, vol. 34, pp. 527–547, 1996.
[23]  M. Y. Hussien, A. A. M. Abd-El-All, and S. S. Mostafa, “Bioactivity of algal extracellular byproducts on cercospora leaf spot disease, growth performance and quality of sugar beet,” in Proceeding of the 4th Conference on Recent Technologies in Agriculture, Cairo, Giza, 2009.
[24]  M. A. Borowitzka, “Microalgae as sources of pharmaceuticals and other biologically active compounds,” Journal of Applied Phycology, vol. 7, no. 1, pp. 3–15, 1995.
[25]  G. Z. de Caire, M. M. S. de Cano, M. C. Z. de Mula, and D. R. de Halperin, “Screening of cyanobacteria bioactive compounds against human pathogens,” Phyton (Buenos Aires), vol. 54, pp. 59–65, 1993.
[26]  S. A. Fish and G. A. Codd, “Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae),” World Journal of Microbiology and Biotechnology, vol. 10, no. 3, pp. 338–341, 1994.
[27]  K. Stratmann, R. E. Moore, R. Bonjouklian et al., “Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to fischerindoles and hapalindoles,” Journal of the American Chemical Society, vol. 116, no. 22, pp. 9935–9942, 1994.
[28]  G. Zulpa, M. C. Zaccaro, F. Boccazzi, J. L. Parada, and M. Storni, “Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “wood blue stain” fungi,” Biological Control, vol. 27, no. 3, pp. 345–348, 2003.
[29]  A. M. Abo-Shady, B. A. Al-ghaffar, M. M. H. Rahhal, and H. A. Abd-El Monem, “Biological control of Faba bean pathogenic fungi by three cyanobacterial filtrates,” Pakistan Journal of Biological Sciences, vol. 10, no. 18, pp. 3029–3038, 2007.
[30]  M. A. Rizk, “Growth activities of the sugarbeet pathogens Sclerotium rolfsii Sacc., Rhizoctonia solani Khun. and Fusarium verticillioides Sacc. under cyanobacterial filtrates stress,” Plant Pathology Journal, vol. 5, no. 2, pp. 212–215, 2006.
[31]  S. G. Rangaiah, P. Lakshmi, and E. Manjula, “Antimicrobial activity of seaweeds Gracillaria, Padina and Sargassum spp. on clinical and phytopathogens,” International Journal of Chemical Analytical Sciences, vol. 1, no. 6, pp. 114–117, 2010.
[32]  N. A. Al-Haj, N. I. Mashan, and M. N. Shamudin, “Antibacterial activity in marine algal Eucheuma denticulatum against Staphylococcus aureus and Streptococcus pyogenes,” Research Journal of Biological Sciences, vol. 4, no. 4, pp. 519–524, 2009.
[33]  N. A. Al-Haj, N. I. Mashan, N. Mariana et al., “Antibacterial activity of marine source extracts against multidrug resistance organisms,” American Journal of Pharmacology and Toxicology, vol. 5, no. 2, pp. 95–102, 2010.
[34]  K. Kolanjinathan and D. Stella, “Antibacterial activity of marine macro algal against human pathogens,” Recent Research in Science and Technology, vol. 1, no. 1, pp. 20–22, 2009.
[35]  S. Cox, N. Abu-Ghannam, and S. Gupta, “An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds,” International Food Research Journal, vol. 17, no. 1, pp. 205–220, 2010.
[36]  A. González del Val, G. Platas, A. Basilio et al., “Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain),” International Microbiology, vol. 4, no. 1, pp. 35–40, 2001.
[37]  R. D. Jebakumar Solomon and V. Satheeja Santhi, “Purification of bioactive natural product against human microbial pathogens from marine sea weed Dictyota acutiloba J. Ag,” World Journal of Microbiology and Biotechnology, vol. 24, no. 9, pp. 1747–1752, 2008.
[38]  R. A. Cordeiro, V. M. Gomes, A. F. U. Carvalho, and V. M. M. Melo, “Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) lamouroux on the growth of human pathogen yeasts,” Brazilian Archives of Biology and Technology, vol. 49, no. 6, pp. 915–921, 2006.
[39]  I. Tüney, B. H. ?adirci, D. ünal, and A. Sukatar, “Antimicrobial activities of the extracts of marine algae from the coast of Urla (?zmir, Turkey),” Turkish Journal of Biology, vol. 30, no. 3, pp. 171–175, 2006.
[40]  S. J. Wratten and D. John Faulkner, “Cyclic polysulfides from the red alga Chondria californica,” Journal of Organic Chemistry, vol. 41, no. 14, pp. 2465–2467, 1976.
[41]  K. Chojnacka, A. Saeid, Z. Witkowska, and L. Tuhy, “Biologically active compounds in seaweed extracts—the prospects for the application,” The Open Conference Proceedings Journal, vol. 3, supplement 1-M4, pp. 20–28, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133