全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Airborne Transmission of Porcine Postweaning Multisystemic Wasting Syndrome

DOI: 10.1155/2013/534342

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of these studies was to investigate if porcine postweaning multisystemic wasting syndrome (PMWS) could be induced in healthy pigs following contact with air from pigs with clinical signs of PMWS. The pigs were housed in different units. Either 31 (study I) or 25 (study II) pigs with clinical symptoms of PMWS from a PMWS-affected herd and 25 healthy pigs from a PMWS-free, but PCV2-positive, herd were housed in unit A. Fifty pigs from a PMWS-free herd were housed in unit B, which were connected by pipes to unit A. In unit C, 30 pigs from a PMWS-free herd were housed as controls. In study II, the pigs in units A and B from the PMWS-free herd developed clinical signs of PMWS 2-3 weeks after arrival. PMWS was confirmed at necropsy and the diseased pigs had increased PCV2 load and increased antibody titers against PCV2 in serum that coincided with the development of clinical signs typical of PMWS. Sequence analysis revealed that the PCV2 isolate belonged to genotype 2b. In conclusion, the present study showed that PMWS can be induced in pigs from a PMWS-free herd by airborne contact with pigs from a PMWS-affected herd. 1. Introduction Postweaning multisystemic wasting syndrome (PMWS) is an important disease in weaned pigs worldwide. PMWS was first described in Canada in 1991 as a chronic disease with progressive weight loss in pigs from 4–16 weeks of age [1]. Since then, the disease has been diagnosed in many countries in North America, Asia, and Europe including Denmark [2, 3]. The clinical signs of PMWS comprise unthriftiness/wasting, paleness of the skin, enlarged lymph nodes, and occasionally jaundice, respiratory symptoms, or diarrhoea [1, 3, 4]. Affected pigs have lesions in lymphoid organs characterized by lymphoid depletion and the presence of giant cells and inclusion bodies [4–7]. PCV2 has proved to be necessary but not sufficient for development of PMWS, since the virus is present in both affected and PMWS-free pigs and herds [4, 8]. The PCV2 virus is transmitted between pigs by the oro-fecal and/or respiratory routes [9, 10] and vertical transmission has also been documented [4, 11]. The high prevalence of PCV2 in almost all herds of all pig-producing countries indicates that the transmission of PCV2 is very effective [12–15]. In contrast, only a few studies have been performed on the “transmission” of the PCV2-associated disease complexes (PCVDs), that is, whether PMWS can be “transmitted” from PMWS-affected to PMWS-free pigs. A study performed in New Zealand demonstrated disease development in healthy pigs in direct or indirect

References

[1]  J. C. Harding and E. Clark, “Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS),” Swine Health and Production, vol. 5, pp. 201–203, 1997.
[2]  G. M. Allan and J. A. Ellis, “Porcine circoviruses: a review,” Journal of Veterinary Diagnostic Investigation, vol. 12, no. 1, pp. 3–14, 2000.
[3]  E. O. Nielsen, C. En?e, S. E. Jorsal et al., “Postweaning multisystemic wasting syndrome in Danish pig herds: productivity, clinical signs and pathology,” Veterinary Record, vol. 162, no. 16, pp. 505–508, 2008.
[4]  A. S. Ladekj?r-Mikkelsen, J. Nielsen, T. Stadejek et al., “Reproduction of postweaning multisystemic wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-old piglets experimentally infected with porcine circovirus type 2 (PCV2),” Veterinary Microbiology, vol. 89, no. 2-3, pp. 97–114, 2002.
[5]  G. M. Allan, F. McNeilly, S. Kennedy et al., “Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe,” Journal of Veterinary Diagnostic Investigation, vol. 10, no. 1, pp. 3–10, 1998.
[6]  J. Ellis, S. Krakowka, M. Lairmore et al., “Reproduction of lesions of postweaning multisystemic wasting syndrome in gnotobiotic piglets,” Journal of Veterinary Diagnostic Investigation, vol. 11, no. 1, pp. 3–14, 1999.
[7]  J. Segalés, C. Rosell, and M. Domingo, “Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease,” Veterinary Microbiology, vol. 98, no. 2, pp. 137–149, 2004.
[8]  G. M. Allan, F. Mc Neilly, B. M. Meehan et al., “Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland,” Veterinary Microbiology, vol. 66, no. 2, pp. 115–123, 1999.
[9]  R. Magar, R. Larochelle, S. Thibault, and L. Lamontagne, “Experimental transmission of porcine circovirus type 2 (PCV2) in weaned pigs: a sequential study,” Journal of Comparative Pathology, vol. 123, no. 4, pp. 258–269, 2000.
[10]  N. Rose, T. Opriessnig, B. Grasland, and A. Jestin, “Epidemiology and transmission of porcine circovirus type 2 (PCV2),” Virus Research, vol. 164, no. 1-2, pp. 78–89, 2012.
[11]  K. H. West, J. M. Bystrom, C. Wojnarowicz et al., “Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus,” Journal of Veterinary Diagnostic Investigation, vol. 11, no. 6, pp. 530–532, 1999.
[12]  S. López-Soria, J. Segalés, N. Rose et al., “An exploratory study on risk factors for postweaning multisystemic wasting syndrome (PMWS) in Spain,” Preventive Veterinary Medicine, vol. 69, no. 1-2, pp. 97–107, 2005.
[13]  M. Andraud, B. Grasland, B. Durand et al., “Quantification of porcine circovirus type 2 (PCV-2) within- and between-pen transmission in pigs,” Veterinary Research, vol. 39, no. 5, article 43, 2008.
[14]  M. Andraud, B. Grasland, B. Durand et al., “Modelling the time-dependent transmission rate for porcine circovirus type 2 (PCV2) in pigs using data from serial transmission experiments,” Journal of the Royal Society Interface, vol. 6, no. 30, pp. 39–50, 2009.
[15]  K. Dupont, C. K. Hjulsager, C. S. Kristensen, P. Baekbo, and L. E. Larsen, “Transmission of different variants of PCV2 and viral dynamics in a research facility with pigs mingled from PMWS-affected herds and non-affected herds,” Veterinary Microbiology, vol. 139, no. 3-4, pp. 219–226, 2009.
[16]  P. Jaros, L. McIntyre, R. S. Morris, A. C. Johnstone, O. Garkavenko, and E. J. Neumann, “Experimental evidence that an agent other than PCV2 is a necessary cause of PMWS,” in Proceedings of the 19th International Pig Veterinary Society Congress Proceedings (IPVS '06), Abstract no. 168, Copenhagen, Denmark, 2006.
[17]  H. Vigre, P. B?kbo, S. E. Jorsal et al., “Spatial and temporal patterns of pig herds diagnosed with Postweaning Multisystemic Wasting Syndrome (PMWS) during the first two years of its occurrence in Denmark,” Veterinary Microbiology, vol. 110, no. 1-2, pp. 17–26, 2005.
[18]  K. A. Woodbine, G. F. Medley, J. Slevin et al., “Spatiotemporal patterns and risks of herd breakdowns in pigs with postweaning multisystemic wasting syndrome,” Veterinary Record, vol. 160, no. 22, pp. 751–762, 2007.
[19]  P. Wallgren, K. Belák, C. J. Ehlorsson et al., “Postweaning Multisystemic Wasting Syndrome (PMWS) in Sweden from an exotic to an endemic disease,” Veterinary Quarterly, vol. 29, no. 4, pp. 122–137, 2007.
[20]  C. S. Kristensen, P. B?kbo, V. Bille-Hansen et al., “Induction of porcine post-weaning multisystemic wasting syndrome (PMWS) in pigs from PMWS unaffected herds following mingling with pigs from PMWS-affected herds,” Veterinary Microbiology, vol. 138, no. 3-4, pp. 244–250, 2009.
[21]  D. Verreault, V. Létourneau, L. Gendron, D. Massé, C. A. Gagnon, and C. Duchaine, “Airborne porcine circovirus in Canadian swine confinement buildings,” Veterinary Microbiology, vol. 141, no. 3-4, pp. 224–230, 2010.
[22]  T. K. Jensen, H. Vigre, B. Svensmark, and V. Bille-Hansen, “Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis,” Journal of Comparative Pathology, vol. 135, no. 4, pp. 176–182, 2006.
[23]  A. B?tner, J. Nielsen, and V. Bille-Hansen, “Isolation of porcine reproductive and respiratory syndrome (PRRS) virus in a Danish swine herd and experimental infection of pregnant gilts with the virus,” Veterinary Microbiology, vol. 40, no. 3-4, pp. 351–360, 1994.
[24]  K. J. S?rensen, B. Strandbygaard, A. B?tner, E. S. Madsen, J. Nielsen, and P. Have, “Blocking ELISA's for the distinction between antibodies against European and American strains of porcine reproductive and respiratory syndrome virus,” Veterinary Microbiology, vol. 60, no. 2–4, pp. 169–177, 1998.
[25]  C. K. Hjulsager, L. Grau-Roma, M. Sibila, C. En?e, L. Larsen, and J. Segalés, “Inter-laboratory and inter-assay comparison on two real-time PCR techniques for quantification of PCV2 nucleic acid extracted from field samples,” Veterinary Microbiology, vol. 133, no. 1-2, pp. 172–178, 2009.
[26]  K. Dupont, E. O. Nielsen, P. B?kbo, and L. E. Larsen, “Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time,” Veterinary Microbiology, vol. 128, no. 1-2, pp. 56–64, 2008.
[27]  Y. Okuda, M. Ono, S. Yazawa, and I. Shibata, “Experimental reproduction of postweaning multisystemic wasting syndrome in cesarean-derived, colostrum-deprived piglets inoculated with porcine circovirus type 2 (PCV2): investigation of quantitative PCV2 distribution and antibody responses,” Journal of Veterinary Diagnostic Investigation, vol. 15, no. 2, pp. 107–114, 2003.
[28]  J. A. Ellis, A. Bratanich, E. G. Clark et al., “Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome,” Journal of Veterinary Diagnostic Investigation, vol. 12, no. 1, pp. 21–27, 2000.
[29]  P. A. Harms, S. D. Sorden, P. G. Halbur et al., “Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus,” Veterinary Pathology, vol. 38, no. 5, pp. 528–539, 2001.
[30]  R. M. Pogranichniy, K. J. Yoon, P. A. Harms, S. D. Sorden, and M. Daniels, “Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome,” Journal of Veterinary Diagnostic Investigation, vol. 14, no. 6, pp. 449–456, 2002.
[31]  A. Rovira, M. Balasch, J. Segalés et al., “Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2,” Journal of Virology, vol. 76, no. 7, pp. 3232–3239, 2002.
[32]  N. Rose, E. Eveno, B. Grasland et al., “Individual risk factors for Post-weaning Multisystemic Wasting Syndrome (PMWS) in pigs: a hierarchical Bayesian survival analysis,” Preventive Veterinary Medicine, vol. 90, no. 3-4, pp. 168–179, 2009.
[33]  C. S. Kristensen, A. B?tner, H. Takai, J. P. Nielsen, and S. E. Jorsal, “Experimental airborne transmission of PRRS virus,” Veterinary Microbiology, vol. 99, no. 3-4, pp. 197–202, 2004.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133