全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Polymer Adsorption on Permeability Reduction in Enhanced Oil Recovery

DOI: 10.1155/2014/395857

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to reduce the permeability to water or brine, there is a possibility of polymer injection into the reservoir. In the present work, special focus has been paid in polymer [partially hydrolyzed polyacrylamide (PHPA)] injection as a part of chemical method. Tests were conducted in the laboratory at the ambient temperature to examine the reduction in permeability to water or brine in the well-prepared sand packed after the polymer injection. The experiments were performed to study the effect of polymer adsorption on permeability reduction by analyzing residual resistance factor values with different concentrations of polymer solutions. The rheological behavior of the polymer has also been examined. The experimental results also indicate that the adsorption behavior of polymer is strongly affected by salinity, solution pH, and polymer concentration. To investigate the effect of polymer adsorption and mobility control on additional oil recovery, polymer flooding experiments were conducted with different polymer concentrations. It has been obtained that with the increase in polymer concentrations, oil recovery increases. 1. Introduction With reservoir getting matured, the increased water production with producing oil is a major concern in the petroleum industry. Hydrocarbon production decreases, which affects recovery economics and disposal of the excessive high amount of underground water, which causes complex environmental problems [1]. Oil and gas reservoirs are often heterogeneous, having a different permeability in different-different layers. This causes channelling of excessive water production through high permeability layers, as a result of which large amount of movable oil and gas remains trapped in low permeability zones which results in poor recovery in primary and secondary stages of production. A significant part of the residual oil can be recovered by application of a polymer solution in the heterogeneous reservoirs [2]. The excess water production can be controlled without affecting oil production rate by using polymer to reduce the relative permeability to water more than the relative permeability to oil [3]. The injection of polymer solutions in production wells has proven to be an effective method to reduce or block excessive water production [4]. In a water-wet reservoir, oil flows inside pores while water through the annulus between the pore walls and the oil-water interface [5]. When the polymer solution is injected, it gets adsorbed on the rock surface to form a thin layer. As water flows through this zone, the adsorbed polymer

References

[1]  P. L. J. Zitha, K. G. S. van Os, and K. F. J. Denys, “Adsorption of linear flexible polymers during laminar flow through porous media: effect of concentration,” in Proceedings of the SPE/DOE Improved Oil Recovery Symposium, pp. 19–22, Tulsa, Okla, USA, April 1998, SPE paper no. 39675.
[2]  O. L. Kouznetsov, E. M. Simkin, G. V. Chilingar, and S. A. Katz, “Improved oil recovery by application of vibro-energy to waterflooded sandstones,” Journal of Petroleum Science and Engineering, vol. 19, no. 3-4, pp. 191–200, 1998.
[3]  A. L. Ogunberu and K. Asghari, “Water permeability reduction under flow-induced polymer adsorption,” in Proceedings of the 5th Canadian International Conference, Alberta, Canada, June 2004, paper no. 2004-236.
[4]  P. D. Moffitt, “Long-term production results of polymer treatments in producing wells in western Kansas,” Journal of Petroleum Technology, vol. 45, no. 4, pp. 356–362, 1993.
[5]  A. Zaitoun and N. Kohler, “Two phase flow through porous Media: effect of an Adsorbed Polymer Layer,” in Proceedings of the SPE Annual Technical Conference and Exhibition, Huston, Tex, USA, October 1998, SPE paper no. 18085.
[6]  M. A. Mohammed, “Investigation of polymer adsorption on rock surface of high saline reservoirs,” in Proceedings of the Saudi Arabia Section Technical Symposium (SPE '08), Alkhobar, Saudi Arebia, May 2008, SPE paper no. 120807.
[7]  H. T. Dovan and R. D. Hutchins, “New polymer technology for water control in gas wells,” SPE Production and Facilities, vol. 9, no. 4, pp. 280–286, 1994.
[8]  G. J. Hirasaki and G. A. Pope, “Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media,” Society of Petroleum Engineering Journal, vol. 14, no. 4, pp. 337–346, 1974.
[9]  C. G. Zheng, B. L. Gall, H. W. Gao, A. E. Miller, and R. S. Bryant, “Effects of polymer adsorption and flow behavior on two-phase flow in porous media,” SPE Reservoir Evaluation & Engineering, vol. 3, no. 3, pp. 216–223, 2000.
[10]  A. Zaitoun and H. Bertin, “Two-phase flow property modification by polymer adsorption,” in Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, Okla, USA, 1998, SPE Paper no. 39631.
[11]  B. C. A. Grattoni, P. F. Luckham, X. D. Jing, L. Norman, and R. W. Zimmerman, “Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers,” Journal of Petroleum Science and Engineering, vol. 45, no. 3-4, pp. 233–245, 2004.
[12]  N. Lai, X. Qin, Z. Ye, C. Li, K. Chen, and Y. Zhang, “The study on permeability reduction performance of a hyperbranched polymer in high permeability porous medium,” Journal of Petroleum Science and Engineering, vol. 112, pp. 198–205, 2013.
[13]  A. R. Al-Hashmi and P. F. Luckham, “Characterization of the adsorption of high molecular weight non-ionic and cationic polyacrylamide on glass from aqueous solutions using modified atomic force microscopy,” Colloids and Surfaces A, vol. 358, no. 1-3, pp. 142–148, 2010.
[14]  H. H. Al-Sharji, C. A. Grattoni, R. A. Dawe, and R. W. Zimmerman, “Disproportionate permeability reduction due to polymer adsorptrion-entanglement,” in SPE European Formation Damage Conference, The Hague, Netherlands, 2001, SPE Paper no. 68972.
[15]  S. Liu, D. L. Zhang, W. Yan, M. Puerto, G. J. Hirasaki, and C. A. Miller, “Favorable attributes alkaline-surfactant-polymer flooding,” Society of Petroleum Engineering Journal, vol. 13, no. 1, pp. 5–16, 2008.
[16]  Y. Masuda, K.-C. Tang, M. Miyazawa, and S. Tanaka, “1D simulation of polymer flooding including the viscoelastic effect of polymer solution,” SPE Reservoir Engineering, vol. 7, no. 2, pp. 247–252, 1992.
[17]  A. Bera, T. Kumar, K. Ojha, and A. Mandal, “Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies,” Applied Surface Science, vol. 284, pp. 87–99, 2013.
[18]  W. Lv, B. Bazin, D. Ma, Q. Liu, D. Han, and K. Wu, “Static and dynamic adsorption of anionic and amphoteric surfactants with and without the presence of alkali,” Journal of Petroleum Science and Engineering, vol. 77, no. 2, pp. 209–218, 2011.
[19]  M. Safian-Boldani, M. P. Shahri, M. Zargartalebi, and M. Arabloo, “New surfactant extracted from zizyphus spina christi for enhanced oil recovery: experimental determination of static adsorption isotherm,” Journal of the Japan Petroleum Institute, vol. 56, no. 3, pp. 142–149, 2013.
[20]  M. A. Ahmadi and S. R. Shadizadeh, “Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals,” Fuel, vol. 104, no. 2, pp. 462–467, 2013.
[21]  A. Samanta, K. Ojha, A. Sarkar, and A. Mandal, “Mobility control and enhanced oil recovery using partially hydrolyzed polyacrylamide (PHPA),” International Journal of Oil, Gas Coal Technology, vol. 6, no. 3, pp. 245–258, 2013.
[22]  D. D. Sparlin, “Evaluation of polyacrylamides for reducing water production (includes associated papers 6561 and 6562),” Journal of Petroleum Technology, vol. 28, no. 5, pp. 906–914, 1976.
[23]  Y. Cohen and A. B. Metzner, “Adsorption effects in the flow of polymer solutions through capillaries,” Macromolecules, vol. 15, no. 5, pp. 1425–1429, 1982.
[24]  N. Tekin, A. Din?er, ?. Demirba?, and M. Alkan, “Adsorption of cationic polyacrylamide (C-PAM) on expanded perlite,” Applied Clay Science, vol. 50, no. 1, pp. 125–129, 2010.
[25]  N. Tekin, ?. Demirba?, and M. Alkan, “Adsorption of cationic polyacrylamide onto kaolinite,” Microporous and Mesoporous Materials, vol. 85, no. 3, pp. 340–350, 2005.
[26]  B. K. Maitin, “Performance analysis of several polyacrylamide floods in the North German oil fields,” in Proceedings of the SPE/DOE Enhance Oil Recovery Symposium, Tulsa, Okla, USA, April 1992, SPE paper no. 24118.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413