全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electromagnetic Heating of Heavy Oil and Bitumen: A Review of Experimental Studies and Field Applications

DOI: 10.1155/2013/476519

Full-Text   Cite this paper   Add to My Lib

Abstract:

Viscosity is a major obstacle in the recovery of low API gravity oil resources from heavy oil and bitumen reservoirs. While thermal recovery is usually considered the most effective method for lowering viscosity, for some reservoirs introducing heat with commonly implemented thermal methods is not recommended. For these types of reservoirs, electromagnetic heating is the recommended solution. Electromagnetic heating targets part of the reservoir instead of heating the bulk of the reservoir, which means that the targeted area can be heated up more effectively and with lower heat losses than with other thermal methods. Electromagnetic heating is still relatively new and is not widely used as an alternate or addition to traditional thermal recovery methods. However, studies are being conducted and new technologies proposed that could help increase its use. Therefore, the objective of this study is to investigate the recovery of heavy oil and bitumen reservoirs by electromagnetic heating through the review of existing laboratory studies and field trials. 1. Introduction High-frequency electromagnetic radiation is a relatively new technique for use in enhanced oil recovery methods. It has been tested by theoretic, laboratories and field trial research in Russia [1–10], the United States [11–17], Canada [18–21], and other countries [22–34]. Traditional thermal recovery and well stimulation techniques using hot steam or fluid are not effective in some cases [7, 35] due to prohibitive heat losses from injection wells and reservoirs, low reservoir injectivity (especially for bitumen deposits), steam leakage, large overburden heat loss at thin pay zones, permafrost conditions, and so forth. Furthermore, commonly used thermal recovery methods are not considered environmentally friendly, damaging the hydrogeologic environment and contributing to the greenhouse effect. The most important thing in electromagnetic heating is that the heat is developed within the material rather than being brought from outside, which means the material is heated more uniformly throughout the medium [27]. Therefore, instead of heating the bulk reservoir volume, part of the reservoir can be targeted and heated more effectively with lower heat loss than other thermal methods. Unlike traditional thermal recovery methods, microwave heating causes friction by vibration of molecules, which results in dielectric heating of the reservoir. Heat and mass transfer in different environments under microwave influence was studied by a number of scientists around the globe, but its application as an

References

[1]  S. Chistyakov, F. Sayakhov, and G. Balabyan, “Experimental study of formations dielectric properties under the influence of high-frequency electromagnetic fields,” in University Investigations: Geology and Exploration, pp. 153–156, 1971.
[2]  F. Sayakhov, “Particular properties of filtration and fluid flow under the influence of high-frequency electromagnetic field,” in Joint University Scientific Book, pp. 108–120, 1980.
[3]  B. Savinikh, V. Dyakonov, and A. Usmanov, “The influence of alternating electric currents on the thermal conductivity of dielectric fluids,” Journal of Engineering Physics and Thermophysics, no. 2, pp. 269–276, 1981 (Russian).
[4]  A. Davletbaev and L. Kovaleva, “Combined RF EM/solvent treatment technique: heavy/extra-heavy oil production model case study,” in Proceedings of the 10th Annual International Conference Petroleum Phase Behavior and Fouling, Rio de Janeiro, Brazil, 2009.
[5]  M. A. Fatikhov, “Experimental study of bitumen initial pressure gradient in the electromagnetic field,” University Investigations: Oil and Gas, no. 5, pp. 93–94, 1990 (Russian).
[6]  L. Kovaleva, A. Davletbaev, T. Babadagli, and Z. Stepanova, “Effects of electrical and radio-frequency electromagnetic heating on the mass-transfer process during miscible injection for heavy-oil recovery,” Energy and Fuels, vol. 25, no. 2, pp. 482–486, 2011.
[7]  G. Malofeev, O. Mirsaetov, and I. Cholovskaya, “Injection of hot fluids for enhanced oil recovery and well stimulation,” in Regular and Chaotic Dynamics, Institute of Computer Science, RussiaIgevsk, Russia, 2008.
[8]  F. Sayakhov, R. Bulgakov, V. Dyblenko, B. Deshura, and M. Bykov, “About HF heating of bitumen reservoirs,” Petroleum Engineering, no. 1, pp. 5–8, 1980 (Russian).
[9]  F. L. Sayakhov, L. A. Kovaleva, M. A. Fatikhov, and G. A. Khalikov, “Method of thermal effect on oil-bearing formation,” SU Patent 1723314, 1992.
[10]  F. Sayakhov, I. Habibullin, M. Yagudin, and M. Fatyhov, “Technique and technology of thermal well stimulation on the basis electro-thermo-chemical and electromagnetic effects,” University Investigations: Oil and Gas, no. 2, pp. 33–42, 1992 (Russian).
[11]  J. E. Bridges, J. J. Krstansky, A. Taflove, and G. C. Sresty, “The IITRI in situ RF fuel recovery process,” Journal of Microwave Power, vol. 18, no. 1, pp. 3–14, 1983.
[12]  J. Bridges, “Method for in-situ heat processing of hydrocarbonaceous formation,” US Patent 4140180, 1979.
[13]  A. D. Haagensen, “Oil well microwave tools,” Patent USA 3170119, 1965.
[14]  H. W. Ritchey, “Radiation Heating System, US Patent,” Tech. Rep. 2757738, 1956.
[15]  G. C. Sresty, R. H. Snow, and J. E. Bridges, “Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in-situ,” US Patent 4485869, 1984.
[16]  R. Wilson, “Well production method using microwave heating,” US Patent 4485868, 1987.
[17]  R. S. Kasevich, S. L. Price, D. L. Faust, and M. F. Fontaine, “Pilot testing of a radio frequency heating system for enhanced oil recovery from diatomaceous earth,” in Proceedings of the SPE Annual Technical Conference & Exhibition, pp. 105–113, New Orleans, La, USA, September 1994.
[18]  H. L. Spencer, “Electromagnetic Oil Recovery, Ltd,” Calgary, Canada, 1987.
[19]  F. E. Vermeulen and F. S. Chute, “Electromagnetic techniques in the in-situ recovery of heavy oils,” Journal of Microwave Power, vol. 18, no. 1, pp. 15–29, 1983.
[20]  S. Rassenfoss, “Seeking more oil, fewer emissions,” Journal of Petroleum Technology, vol. 64, no. 9, pp. 34–38, 2012.
[21]  B. C. W. Mcgee and F. E. Vermeulen, “The mechanisms of electrical heating for the recovery of bitumen from oil sands,” Journal of Canadian Petroleum Technology, vol. 46, no. 1, pp. 28–34, 2007.
[22]  R. J. Davidson, “Electromagnetic stimulation of Lloydminster heavy oil reservoirs: field test results,” Journal of Canadian Petroleum Technology, vol. 34, no. 4, pp. 15–24, 1995.
[23]  A. Chakma and K. N. Jha, “Heavy-oil recovery from thin pay zones by electromagnetic heating, paper SPE 24817,” in Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Washington, DC, USA, October 1992.
[24]  B. Hascakir, C. Acar, Schlumberger, B. Demiral, and S. Akin, “Microwave assisted gravity drainage of heavy oils,” in Proceedings of the International Petroleum Technology Conference (IPTC '08), pp. 1908–1916, Kuala Lumpur, Malaysia, December 2008.
[25]  B. Hascakir, T. Babadagli, and S. Akin, “Experimental and numerical modeling of heavy-oil recovery by electrical heating, paper SPE 117669,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium (ITOHOS '08), p. 14, Society of Petroleum Engineers, Alberta, Canada, October 2008.
[26]  M. Koolman, N. Huber, D. Diehl, and B. Wacker, “Electromagnetic heating method to improve steam assisted gravity drainage, paper 1177481,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium (ITOHOS '08), pp. 327–338, Society of Petroleum Engineers, Alberta, Canada, October 2008.
[27]  K. A. Jha, N. Joshi, and A. Singh, “Applicability and assessment of micro-wave assisted gravity drainage (MWAGD) applications in Mehsana heavy oil field, paper SPE 14591,” in Proceedings of the SPE Heavy Oil Conference and Exhibition, Society of Petroleum Engineers, Kuwait City, Kuwait, December 2011.
[28]  J. R. Kershaw, G. Barrass, and D. Gray, “Chemical nature of coal hydrogenation oils part I. The effect of catalysts,” Fuel Processing Technology, vol. 3, no. 2, pp. 115–129, 1980.
[29]  S. Odenbach, “Ferrofluids—magnetically controlled suspensions,” Colloids and Surfaces A, vol. 217, no. 1–3, pp. 171–178, 2003.
[30]  C. Ovalles, A. Fonseca, A. Lara et al., “Opportunities of downhole dielectric heating in Venezuela: three case studies involving medium, heavy and extra-heavy crude oil reservoirs, paper SPE 78980,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Alberta, Canada, November 2002.
[31]  M. A. Ayrapetyan, “About oil fields development prospects by high-frequency currents electrical fields,” in Materials of KSSR Institute of Oil, pp. 38–52, 1958.
[32]  M. A. Ayrapetyan, V. S. Velikanov, and E. Ya. Magnikov, “Reservoir high-frequency heating investigations,” in Materials of KSSR Institute of Oil, pp. 113–124, 1959.
[33]  M. A. Carrizales, L. W. Lake, and R. T. Johns, “Production improvement of heavy-oil recovery by using electromagnetic heating, paper SPE 115723,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '08), Denver, Colo, USA, September 2008.
[34]  A. D. Hiebert, F. E. Vermeulen, F. S. Chute, and C. E. Capjack, “Numerical simulation results for the electrical heating of Athabasca oil-sand formations,” SPE Reservoir Engineering, vol. 1, no. 1, pp. 76–84, 1986.
[35]  J. Burge, P. Surio, and M. Combarnu, Thermal Methods of Enhanced Oil Recovery, Nedra Publishing, Moscow, Russia, 1988.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413