全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Knowledge Discovery for Classification of Three-Phase Vertical Flow Patterns of Heavy Oil from Pressure Drop and Flow Rate Data

DOI: 10.1155/2013/746315

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on the use of artificial intelligence (AI) techniques to identify flow patterns acquired and recorded from experimental data of vertical upward three-phase pipe flow of heavy oil, air, and water at several different combinations, in which water is injected to work as the continuous phase (water-assisted flow). We investigate the use of data mining algorithms with rule and tree methods for classifying real data generated by a laboratory scale apparatus. The data presented in this paper represent different heavy oil flow conditions in a real production pipe. 1. Introduction The design of oil production pipelines involves evaluation of flow lines subject to multiphase flow of oil, water, and gas, where oscillations in pressure, temperature, and phase concentration typically occur. Furthermore, the phases usually flow on different geometrical distributions inside the pipe, named flow patterns. The identification of flow patterns is essential for the economic evaluation of the project, such as pressure drop and flow rate along the pipeline. These aspects are critical on offshore production conditions, where extensive distances and high costs are involved. Flow pattern identification is an important step to design separation equipments, slug catchers, gas lift operations, wellhead gathering systems, and production management and control. With the discovery of heavy oil reservoirs the lack of tools and methodologies for flow pattern identification deserves attention because the existing multiphase flow correlations are made for low API oils, where the oil-water mixture may be treated as a single liquid phase with average properties. However, for water-continuous flow of heavy oil below bubble-point, three distinct phases are present, that is, oil, water, and gas, thus making the traditional approach of flow pattern classification and pressure drop prediction in three-phase flow may have poor accuracy. Basically, there are two types of models for flow pattern prediction: empirical and mechanistic. Empirical models are related to experimental data, where flow pattern maps are experimentally determined and analyzed with respect to mathematical relations representing the boundaries between the flow pattern regions. These relations depend on the amount of experimental data used and on the coordinate system in which the data are presented. Mechanistic models are based on balance equations [1]. Notwithstanding, these models are formulated to describe single or two-phase flows, and they cannot be highly extended for oil-gas-water mixtures, when the

References

[1]  A. Wegmann, Multiphase flows in small scale pipes [Doctoral Dissertation], Federal Institute of Technology Zurich, 2005, ETH Nr. 16189.
[2]  A. C. Bannwart, F. F. Vieira, C. H. M. Carvalho, and A. P. Oliveira, “Water-assisted flow of heavy oil and gas in a vertical pipe,” in Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium (ITOHOS '05), Alberta, Canada, November 2005, Paper PS2005-SPE-97875-PP.
[3]  R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony optimization algorithm,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 321–332, 2002.
[4]  S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 2nd edition, 1999.
[5]  T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining algorithms for classification tasks,” Parallel Computing, vol. 30, no. 5-6, pp. 767–783, 2004.
[6]  N. Holden and A. A. Freitas, “A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data,” in Proceedings of the 2005 IEEE Swarm Intelligence Symposium (SIS '05), pp. 100–107, Pasadena, Calif, USA, June 2005.
[7]  N. Holden and A. A. Freitas, “Hierarchical classification of G-protein-coupled receptors with a PSO/ACO algorithm,” in Proceedings of the 2006 IEEE Swarm Intelligence Symposium (SIS '06), pp. 77–84, Indianapolis, Ind, USA, 2006.
[8]  J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, Calif, USA, 2001.
[9]  M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, Cambridge, Mass, USA, 2004.
[10]  N. P. Holden and A. A. Freitas, “A hybrid PSO/ACO algorithm for classification,” in Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference (GECCO '07), pp. 2745–2750, London, UK, July 2007.
[11]  R. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, Calif, USA, 1993.
[12]  N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning, vol. 59, no. 1-2, pp. 161–205, 2005.
[13]  W. Cohen, “Fast effective rule induction,” in Proceedings of the 12th International Conference on Machine Learning, pp. 115–123, Lake Tahoe, Calif, USA, 1995.
[14]  I. H. Witten, M. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tool and Technique with Java Implementation, Morgan Kaufmann, San Francisco, Calif, USA, 3rd edition, 2011.
[15]  V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998.
[16]  F. Pacheco, A. C. Bannwart, J. R. P. Mendes, and A. B. S. Serapi?o, “Support vector ma-chines for identification of three-phase flow patterns of heavy oil in vertical pipes,” Brazilian Journal of Petroleum and Gas, vol. 1, no. 2, pp. 95–103, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413