全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst

DOI: 10.1155/2013/956479

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research work is about the production of biodiesel from jatropha oil. Other oils can also be used for the production, but jatropha was chosen because it is not edible therefore, it will not pose a problem to humans in terms of food competition. Before the transesterification process was carried out, some basic tests such as free fatty acid content, iodine value, and moisture content were carried out. This was done so as to ascertain quality yield of the biodiesel after the reaction. The production of the biodiesel was done with standard materials and under standard conditions which made the production a hitch-free one. The jatropha oil was heated to 60°C, and a solution of sodium methoxide (at 60°C) was added to the oil and stirred for 45 minutes using a magnetic stirrer. The mixture was then left to settle for 24 hours. Glycerin, which is the byproduct, was filtered off. The biodiesel was then thoroughly washed to ensure that it was free from excess methanol and soap. The characterization was done at NNPC Kaduna refinery and petrochemicals. The result shows that the product meets the set standard for biodiesel. 1. Introduction There is a continuous search for renewable sources of fuels due to the rate of depletion of fossils. The term biofuel is used to define fuels that are obtainable from plants or animals. Being a renewable source, it is gaining attention all over the world today. Biofuel is defined as fuel comprising of mono-alkyl esters of long fatty acids derived from vegetable oils or animal fats [1]. These fuels could be either in the form of vegetable oils or animal fats that have been transformed by chemical or natural processes for use in powering various engines. Biofuels are obtained from renewable energy sources such as biological materials from living organisms and can also be obtained from biodegrade waste. Hence, the term biomass is used to describe the sources of biofuels. These are wastes from plants and animals that are capable of being used as fuels in their original form or with little modification. These wastes can also be used in production of fibres and chemicals that are essential to our daily lives. The term biofuel is not the same with fuels from fossils, the major difference between biofuels and fossil fuel is in their carbon content and the amount of emission they give off when burnt [2]. Various types of engines manufactured today are made to run on a wide variety of fuels, such as premium motor spirit (petrol), diesel, or gas as their primary fuel, with all these types of engines, the diesel engine is the one most

References

[1]  Q. Junfeng, S. Haixlan, and Y. Zhi, Preparation of Biodiesel From Jatropha Circas Oil Produced By Two-Phase Solvent Extraction, Pergamon Press, 2010.
[2]  W. Marshall, L. G. Schumacher, and S. A. Howell, “Engine Exhaust Emissions Evaluation of a Cummins L10E When Fueled with a Biodiesel Blend,” SAE Paper No. 952363, SAE, Warrendale, Pa, USA, 1995.
[3]  Hansen and C. Alan, “Combustion and Emission characteristics of Biodiesel Fuel,” CABER Seminar, Department of Agricultural and Biological Engineering, University of Illinois, Urbana, Ill, USA, Pp 6., 2008.
[4]  “DOE, Biodiesel Green Diesel Fuel,” DOE/GO-102001-1449, National Renewable Energy Lab, US Department of Energy, February, 2002.
[5]  Silveira and D. Foster, “Availability of Biomass Across the Globe,” 2008, http://www.forestencyclopedia.net/.
[6]  N. E. Leadbeater and L. M. Stencel, “Fast, easy preparation of biodiesel using microwave heating,” Energy and Fuels, vol. 20, no. 5, pp. 2281–2283, 2006.
[7]  J. C. Thompson, C. L. Peterson, D. L. Reece, and S. M. Beck, “Two-year storage study with methyl and ethyl esters of rapeseed,” Transactions of the American Society of Agricultural Engineers, vol. 41, no. 4, pp. 931–939, 1998.
[8]  C. L. Peterson, J. C. Thompson, J. S. Taberski, D. L. Reece, and G. Fleischman, “Long-range on-road test with twenty-percent rapeseed biodiesel,” Applied Engineering in Agriculture, vol. 15, no. 2, pp. 91–101, 1999.
[9]  L. G. Schumacher, S. C. Borgelt, and W. G. Hires, “Fueling a diesel engine with methyl-ester soybean oil,” Applied Engineering in Agriculture, vol. 11, no. 1, pp. 37–40, 1995.
[10]  C. Peterson and D. Reece, “Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck,” Transactions of the American Society of Agricultural Engineers, vol. 39, no. 3, pp. 805–816, 1996.
[11]  G. Knothe, G. Jon Van, and K. Jurgen, The Biodiesel Handbook, Champaign, Ill, USA, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133