全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Monitoring of Moisture in Transformer Oil Using Optical Fiber as Sensor

DOI: 10.1155/2013/528478

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes an optical fiber sensor and temperature sensor-based instrumentation system to measure the moisture content in transformer oil. The sensor system consists of (i) Diode Laser Source, (ii) a bare and bent multimode fiber as sensor probe, (iii) an LDR as detector, (iv) LM35-based temperature sensor, and (v) microcontroller system having a trained ANN for processing and calibration. The bare and bent optical fiber sensor and the temperature sensor LM35 are used to provide the measures of refractive index (RI) and temperature of a transformer oil sample. An ATmega32-microcontroller-based system with trained ANN algorithm has been developed to determine the moisture content of the transformer oil sample by sampling the readings of the bare bent optical fiber sensor and the temperature sensor. 1. Introduction Fiber optic sensors offer unique advantages, such as immunity to electromagnetic interferences, stability, repeatability, durability against harsh environment, and fast response. Therefore, they are used for the measurement of physical parameters such as temperature [1], pressure [2], acceleration [3], curvature measurement [4], hydrocarbon monitoring [5], and host of other applications. Power transformers are one of the most expensive investments in electric power systems [6]. They are fundamental components of electric power systems, and their reliability is an important factor in the operation of the system [7]. The transformer oil is a good insulating material. However, due to some inevitable factors, some unwanted particles like water and gas can contaminate the oil. As a result, insulation strength gets reduced that may result in partial discharge of transformer oil [8]. Model-based online detection method [6], partial discharge method [7], chromatography, radiofrequency method, infrared spectroscopy, neural network method [9], and so forth are some of the techniques developed for detection of moisture content of transformer oil. The dielectric parameter ( , relative permittivity) of transformer oil indicates the quality of the oil as the insulation property is concerned. Again, square of refractive index is represented as relative permittivity of an optical material. Therefore, the moisture content in transformer oil sample can be related to the change in refractive index of the sample. In fact, the measure of refractive index provides information about the turbidity of a liquid [10]. An optical fiber sensor for measuring the refractive index of liquid, based on the measurement of the input and output power of a multimode

References

[1]  D. Hazarika, K. C. Sarma, and P. K. Sarmah, “Microprocessor-based temperature monitoring system using optical fibers,” IEEE Sensors Journal, vol. 9, no. 9, pp. 1025–1028, 2009.
[2]  D. Hazarika and D. S. Pegu, “Microcontroller based air pressure monitoring instrumentation system using optical fibers as sensor,” Optical Fiber Technology, vol. 19, pp. 83–87, 2013.
[3]  D. R. Miers, D. Raj, and J. W. Brthold, “Designed and characterization of optical fiber acceleratometers,” in Fiber Optic and Laser Sensors V, vol. 838 of Proceedings of SPIE, pp. 314–317, San Diego, Calif, USA, 1987.
[4]  R. Liu, Z. Fu, Y. Zhao, Q. Cao, and S. Wang, “Operation principle of a bend enhanced curvature optical fiber sensor,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 1966–1971, October 2006.
[5]  F. Prudenzano, L. Mescia, L. A. Allegretti et al., “Design of an optical sensor array for hydrocarbon monitoring,” Optical and Quantum Electronics, vol. 41, no. 1, pp. 55–68, 2009.
[6]  W. Hribernik, G. Pascoli, and K. Fróhlich, “An advanced model-based diagnosis system for online detection of the moisture content of power transformer insulations,” in Proceedings of the IEEE International Symposium on Electrical Insulation (ISEI '08), pp. 187–191, June 2008.
[7]  G. F. C. Veloso, L. E. B. Silva, I. Noronha, and G. Lambert Torres, “Using partial discharge as sample signal source to identify contamination moisture pattern in power transformer insulating oil,” in Proceedings of the 36th Annual Conference of the IEEE Industrial Electronics Society (IECON '10), pp. 1041–1044, November 2010.
[8]  C.-P. Zhu, Y.-L. Huang, M.-L. Shan, and L.-H. Lu, “The research of moisture detection in transformer oil based on ultrasonic method,” in Proceedings of the 2nd International Conference on Information Science and Engineering (ICISE '10), pp. 1621–1624, December 2010.
[9]  W.-G. Chen, D.-G. Gan, and Q. Liu, “On-line monitoring model based on neural network for moisture content in transformer oil,” High Voltage Engineering, vol. 33, no. 5, pp. 73–78, 2007.
[10]  A. Banerjee, S. Mukherjee, R. K. Verma et al., “Fiber optic sensing of liquid refractive index,” Sensors and Actuators B, vol. 123, no. 1, pp. 594–605, 2007.
[11]  T. Takeo and H. Hattori, “Optical fiber sensor for measuring refractive index,” Japanese Journal of Applied Physics, vol. 21, no. 10, pp. 1509–1512, 1982.
[12]  A. L. Chaudhari and A. D. Shaligram, “Multi-wavelength optical fiber liquid refractometry based on intensity modulation,” Sensors and Actuators A, vol. 100, no. 2-3, pp. 160–164, 2002.
[13]  R. Shoureshi, V. Permana, R. Wood, R. Swartzendruber, and M. Simoes, “Optical sensor for transformer monitoring,” Intelligent Transformer Monitoring System Utilizing Neuro-Fuzzy Technique Approach, PSERC 04-27, 2004.
[14]  M. Koch, S. Tenbohlen, and T. Stirl, “Advanced online moisture measurement in power transformer,” in Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD '06), April 2006.
[15]  A. Barwicz and W. J. Bock, “An electric high-pressure measuring system using a polarimetric fiber-optic sensor,” IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 6, pp. 976–981, 1990.
[16]  G. Betta, A. Pietrosanto, and A. Scaglione, “Microcontroller-based performance enhancement of an optical fiber level transducer,” IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 2, pp. 489–493, 1998.
[17]  G. Keiser, Attenuation: Optical Fiber Communication, Mcgraw Hill, 2nd edition, 1991.
[18]  D. Gloge, “Bending loss in multimode fibers with graded and ungraded core fibers,” Applied Optics, vol. 11, no. 11, pp. 2506–2513, 1972.
[19]  B. P. Pal, “Characterization of optical fibers for telecommunication and sensors-Multimode fibers: fundamentals of fibre optics,” in Telecommunication and Sensor Systems, pp. 264–267, New Age International, 1st edition, 2009.
[20]  D. Hazarika, K. C. Sarma, and N. Baruah, “static voltage stability indication in a power system using ANN,” IJMAN, vol. 2, no. 1, pp. 44–49, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413