全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Choking Affects the Operation Diagram of a CFB Riser

DOI: 10.1155/2014/980416

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experiments in 3 different CFB risers have confirmed that common riser operations can be hampered in a well-defined (U, G) range where choking occurs. Geldart A-type powders were investigated. Experimental results of the choking velocity were empirically correlated, being about 30% lower than predicted by the correlation of Bi and Fan, but largely exceeding other predictions. Introducing the findings into the operation diagram presented by Mahmoudi et al. adds a region where stable riser operation is impossible. The adapted diagram enables CFB designers to better delineate the operating characteristics. 1. Introduction CFBs are widely used in the chemical, mineral, environmental, and energy process industries. Several authors stressed the need for a clear identification of the different operation regimes in the riser of a CFB, to ensure a better comprehension of the hydrodynamic context and thus correctly design the loop. First approaches to develop a “work map” of the riser operation were presented by, for example, Grace [1], Yerushalmi and Avidan [2], and Bai et al. [3]. It was further developed by Chan et al. [4] and Mahmoudi et al. [5, 6] for both Geldart A- and B-type powders: the operating gas velocity ( ) and the solids circulation flux ( ) jointly delineate different regimes, called, respectively, dilute riser flow (DRF), core-annulus flow (CAF) (possibly with a turbulent fluidized bed at the bottom of the riser (TFBB)), and dense riser upflow (DRU). For a given powder and its associated transport velocity, , the combination of and will determine the flow regime encountered. Common riser operations can, however, be hampered in a specific range where choking occurs, being understood as the phenomenon where a small change in gas or solids flow rate prompts a significant change in the pressure drop and/or solids holdup: the stable riser upflow regime is no longer maintained when values exceed a certain limit for a low-to-moderate gas velocity. Considerable efforts have been made in probing choking in CFBs, and several empirical equations have been proposed, as summarized in the following. Literature Correlations to Predict Choking Velocities, . The following equations were proposed. Leung et al. [7] Matsen [8] Yousfi and Gau [9] Bi and Fan [10] The objective of the present research hence considered (i) the delineation of the choking phenomenon in different riser geometries and using different A-type powders, (ii) the comparison of experimental results with the empirical predictions of (1)–(4), and finally (iii) the adaptation of the proposed

References

[1]  J. R. Grace, “High-velocity fluidized bed reactors,” Chemical Engineering Science, vol. 45, no. 8, pp. 1953–1966, 1990.
[2]  J. Yerushalmi and A. Avidan, “High velocity fluidization,” in Fluidization, J. F. Davidson, R. Clift, and D. Harrison, Eds., pp. 225–289, Academic Press, New York, NY, USA, 2nd edition, 1985.
[3]  D. Bai, E. Shibuya, Y. Masuda, K. Nishio, N. Nakagawa, and K. Kato, “Distinction between upward and downward flows in circulating fluidized beds,” Powder Technology, vol. 84, no. 1, pp. 75–81, 1995.
[4]  C. W. Chan, J. P. K. Seville, D. J. Parker, and J. Baeyens, “Particle velocities and their residence time distribution in the riser of a CFB,” Powder Technology, vol. 203, no. 2, pp. 187–197, 2010.
[5]  S. Mahmoudi, J. Baeyens, and J. Seville, “The solids flow in the CFB-riser quantified by single radioactive particle tracking,” Powder Technology, vol. 211, no. 1, pp. 135–143, 2011.
[6]  S. Mahmoudi, C. W. Chan, A. Brems, J. Seville, and J. Baeyens, “Solids flow diagram of a CFB riser using Geldart B-type powders,” Particuology, vol. 10, no. 1, pp. 51–61, 2012.
[7]  L. S. Leung, R. J. Wiles, and D. J. Nicklin, “Correlation for predicting choking flowrates in vertical pneumatic conveying,” Industrial and Engineering Chemistry Process Design and Development, vol. 10, no. 2, pp. 183–189, 1971.
[8]  J. M. Matsen, “Mechanisms of choking and entrainment,” Powder Technology, vol. 32, no. 1, pp. 21–33, 1982.
[9]  Y. Yousfi and G. Gau, “Aerodynamique de l'ecoulement vertical de suspensions concentrees gaz-solides—I. Regimes d'ecoulement et stabilite aerodynamique,” Chemical Engineering Science, vol. 29, no. 9, pp. 1939–1946, 1974.
[10]  H. T. Bi and L. S. Fan, “Regime transitions in gas-solid circulating fluidized beds,” in Proceedings of the AIChE Annual Meeting, pp. 17–22, AIChE, Los Angeles, Calif, USA, 1991.
[11]  D. Geldart, “Particle entrainment and carry-over,” in Gas Fluidization Technology, D. Geldart, Ed., pp. 123–153, John Wiley & Sons, New York, NY, USA, 1986.
[12]  H. L. Zhang, Powder circulation systems for heat storage [Ph.D. thesis], KU Leuven, 2013.
[13]  J. Baeyens and D. Geldart, “An investigation into slugging fluidized beds,” Chemical Engineering Science, vol. 29, no. 1, pp. 255–265, 1974.
[14]  B. Du and L. S. Fan, “Characteristics of choking behavior in circulating fluidized beds for group B particles,” Industrial and Engineering Chemistry Research, vol. 43, no. 18, pp. 5507–5520, 2004.
[15]  B. Du, W. Warsito, and L. Fan, “Imaging the choking transition in gas-solid risers using electrical capacitance tomography,” Industrial and Engineering Chemistry Research, vol. 45, no. 15, pp. 5384–5395, 2006.
[16]  D. Bai, A. S. Issangya, and J. R. Grace, “A novel method for determination of choking velocities,” Powder Technology, vol. 97, no. 1, pp. 59–62, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133