全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Self-Nanoemulsifying Powder of Isotretinoin: Preparation and Characterization

DOI: 10.1155/2013/108569

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present investigation an attempt was made to enhance the solubility and dissolution of poorly soluble drug, isotretinoin, by formulating self-nanoemulsifying drug delivery system (SNEDDS). Liquid SNEDDSs were prepared using Transcutol P as oil, Tween 80 as surfactant, and PEG 400 as cosurfactant. Pseudoternary phase diagrams were constructed to identify the efficient self-nanoemulsification region. The formulation with 40% oil (Transcutol P) and 60% surfactant: cosurfactant (Tween 80: PEG 400) ratio of 1?:?1 was optimized based on evaluation parameters for droplet size analysis, self-emulsification capacity, zeta potential, and in vitro drug release performance. The optimized system contains mean droplet size of 36.60?nm and zeta potential (ζ) ?26.73?mV. The optimized formulation A1 was adsorbed onto Fujicalin to produce solid SNEDDS, which exhibited good flow properties and preserved the self-emulsification properties of liquid SNEDDS. The differential scanning calorimetry, FT-IR studies of solid SNEDDS revealed transformation of isotretinoin into molecularly dissolved state in the liquid SNEDDS. In vitro dissolution profiles showed that dissolution rate of ISN from solid SNEDDS was significantly greater as compared to pure drug. 1. Introduction Many drug candidates show low water solubility and hence might have a problem of bioavailability, intrasubject or intersubject variability, and lack of dose proportionality [1]. Thus the oral delivery of these low soluble drugs is difficult where dissolution is rate limiting step [2]. The various strategies such as solid dispersions [3], complexation with cyclodextrin [4] and lipid based formulations [5], and self-emulsifying drug delivery systems (SEDDS) [6] have been reported in the literature. Of various strategies reported SEDDS are found to be the prominent approach to improve solubility. SEDDS improve the oral bioavailability of poorly soluble drugs by improving the solubility and maintaining the drug in a dissolved state, in small droplets of oil, all over its transport through the gastrointestinal tract [7]. SEDDS is an isotropic mixture that is comprise of drug, oil, surfactant, and cosurfactant. It readily dispersed in the aqueous environment of the gastrointestinal tract and forms a fine oil-in-water emulsion. If the droplet size of SEDDS is less than 100?nm it is self-nanoemulsifying (SNEDDS) and for less than 5? m it is self-microemulsifying (SMEDDS) under gentle agitation which improves the oral bioavailability of poorly water-soluble drugs. Compared to ordinary metastable emulsions, SNEDDS

References

[1]  C. Lipinski, “Poor aqueous solubility—an industry wide problem in drug discovery,” American Pharmaceutical Review, vol. 5, no. 3, pp. 82–85, 2002.
[2]  A. M. Palmer, “New horizons in drug metabolism, pharmacokinetics and drug discovery,” Drug News and Perspectives, vol. 16, no. 1, pp. 57–62, 2003.
[3]  I. Weuts, D. Kempen, A. Decorte et al., “Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64,” European Journal of Pharmaceutical Sciences, vol. 22, no. 5, pp. 375–385, 2004.
[4]  H. O. Ammar, H. A. Salama, M. Ghorab, and A. A. Mahmoud, “Implication of inclusion complexation of glimepiride in cyclodextrin-polymer systems on its dissolution, stability and therapeutic efficacy,” International Journal of Pharmaceutics, vol. 320, no. 1-2, pp. 53–57, 2006.
[5]  J. M. Odeberg, P. Kaufmann, K. Kroon, and P. H?glund, “Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine,” European Journal of Pharmaceutical Sciences, vol. 20, no. 4-5, pp. 375–382, 2003.
[6]  P. Balakrishnan, B. Lee, D. H. Oh et al., “Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems,” International Journal of Pharmaceutics, vol. 374, no. 1-2, pp. 66–72, 2009.
[7]  C. W. Pouton, “Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems,” European Journal of Pharmaceutical Sciences, vol. 11, no. 2, pp. 93–98, 2000.
[8]  Y. Zhaoa, C. Wanga, A. H. L. Chowb et al., “Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies,” International Journal of Pharmaceutics, vol. 383, pp. 170–177, 2010.
[9]  R. N. Gursoy and S. Benita, “Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs,” Biomedicine and Pharmacotherapy, vol. 58, pp. 173–182, 2004.
[10]  C. G. Wilson and B. O. Mahony, “The behavior of fats and oils in the upper G.I. Tract,” Gattefossé Bulletin Technique, vol. 90, pp. 13–18, 1997.
[11]  Y. Chen, G. Li, X. Wu et al., “Self-microemulsifying drug delivery system (SMEDDS) of vinpocetine: formulation development and in vivo assessment,” Biological and Pharmaceutical Bulletin, vol. 1, pp. 118–125, 2008.
[12]  V. R. Kallakunta, S. Bandari, and R. Jukanti, “Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation,” Powder Technology, vol. 221, pp. 375–382, 2012.
[13]  J. Patel, G. Kevin, A. Patel, M. Raval, and N. Sheth, “Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery,” International Journal of Pharmaceutical Investigation, vol. 1, no. 2, pp. 112–118, 2011.
[14]  S. Agrawal, T. Giri, D. Tripathi, and A. Alaxander, “A review on novel therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant based self micro emulsifying drug delivery system: a novel approach,” American Journal of Drug Discovery and Development, vol. 2, no. 4, pp. 143–183, 2012.
[15]  V. Bali, M. Ali, and J. Ali, “Nanocarrier for the enhanced bioavailability of a cardiovascular agent: in vitro, pharmacodynamic, pharmacokinetic and stability assessment,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 46–56, 2011.
[16]  P. Balakrishnan, B. Lee, D. H. Oh et al., “Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS),” European Journal of Pharmaceutics and Biopharmaceutics, vol. 72, no. 3, pp. 539–545, 2009.
[17]  M. Milovi?, J. Djuri?, L. Djeki?, D. Vasiljevi?, and S. Ibri?, “Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release,” International Journal of Pharmaceutics, vol. 436, pp. 58–65, 2012.
[18]  P. P. Constantinides, J.-P. Scalart, C. Lancaster et al., “Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides,” Pharmaceutical Research, vol. 11, no. 10, pp. 1385–1390, 1994.
[19]  “Isotretinoin 13-cis-Retinoic acid,” 2013, (4759-48-2) MSDS, Chemical Book, http://www.chemicalbook.com/ProductMSDSDetailCB6222631_EN.htm.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413