全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Development and Comparison of a Hybrid PBM-DEM Description of a Continuous Powder Mixing Process

DOI: 10.1155/2013/843784

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the development of a multidimensional population balance model (PBM) which can account for the dynamics of a continuous powder mixing/blending process. The PBM can incorporate the important design and process conditions and determine their effects on the various critical quality attributes (CQAs) accordingly. The important parameters considered in this study are blender dimensions and presence of noise in the inlet streams. The blender dynamics have been captured in terms of composition of the ingredients, (relative standard deviation) RSD, and (residence time distribution) RTD. PBM interacts with discrete element modeling (DEM) via one-way coupling which forms a basic framework for hybrid modeling. The results thus obtained have been compared against a full DEM simulation which is a more fundamental particle-level model that elucidates the dynamics of the mixing process. Results show good qualitative agreement which lends credence to the use of coupled PBM as an effective tool in control and optimization of mixing process due to its relatively fewer computational requirements compared to DEM. 1. Introduction and Background Although the pharmaceutical industries must satisfy strict production specification norms imposed by regulatory authorities, mainly due to inefficient control strategies [1, 2] and the nonpredictive effects of input parameters, the final products obtained are often nonuniform with a high level of variability with respect to product quality [3]. Moreover, the behavior of powder processing units are not well characterized as compared to the fluid processing units due to the absence of set of governing equations derived from the first principles which can describe granular flow under specific conditions. The interactions of the particles with surrounding particles, fluid, or equipment wall is quite complex to understand, model and manage. Bulk material behavior is decided by the interactions among individual particles at microscale, which is chaotic. Hence often the pharmaceutical industries have to follow a univariate trial and error approach for their process development. However efforts are being made in order to introduce science-based holistic development of process and product by using Quality by Design (QbD) and Process Analytical Technology (PAT) tools [4, 5]. Continuous manufacturing offers many advantages such as better process understanding and control. Several other chemical industries (e.g., Petroleum Refineries, Petrochemicals and Food) have adapted state of the art simulation techniques and satisfy

References

[1]  A. Gor?ek and P. Glavi?, “Design of batch versus continuous processes—part I: single-purpose equipment,” Chemical Engineering Research and Design, vol. 75, no. 7, pp. 709–717, 1997.
[2]  H. Leuenberger, “New trends in the production of pharmaceutical granules: batch versus continuous processing,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 52, no. 3, pp. 289–296, 2001.
[3]  P. McKenzie, S. Kiang, J. Tom, A. Erik Rubin, and M. Futran, “Can pharmaceutical process development become high tech?” AIChE Journal, vol. 52, no. 12, pp. 3990–3994, 2006.
[4]  S. Adam, D. Suzzi, C. Radeke, and J. G. Khinast, “An integrated Quality by Design (QbD) approach towards design space definition of a blending unit operation by Discrete Element Method (DEM) simulation,” European Journal of Pharmaceutical Sciences, vol. 42, no. 1-2, pp. 106–115, 2011.
[5]  S. D. Schaber, D. I. Gerogiorgis, R. Ramachandran, J. M. B. Evans, P. I. Barton, and B. L. Trout, “Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study,” Industrial and Engineering Chemistry Research, vol. 50, no. 17, pp. 10083–10092, 2011.
[6]  A. Gorsek and P. Glavic, “Design of batch versus continuous processes: part 2: multi-purpose equipment,” Transactions of IchemE, vol. 75, pp. 709–717, 1997.
[7]  K. Plumb, “Continuous processing in the pharmaceutical industry: changing the mind set,” Chemical Engineering Research and Design, vol. 83, no. 6 A, pp. 730–738, 2005.
[8]  H. Leuenberger and G. Betz, “Granulation process control-production of pharmaceutical granules: the classical batch concept and the problem of scale-up,” Granulation, vol. 98, 2007.
[9]  F. Boukouvala, V. Niotis, R. Ramachandran, F. Muzzio, and M. G. Ierapetritou, “Dynamic flow-sheet modeling and sensitivity analysis of a continuous tablet manufacturing process: an integrated approach,” Computers and Chemical Engineering, vol. 42, pp. 30–47, 2012.
[10]  R. Ramachandran, J. Arjunan, A. Chaudhury, and M. Ierapetritou, “Model-based control-loop performance assesment of a continuous direct compaction pharmaceutical process,” Journal of Pharmaceutical Innovation, vol. 6, pp. 249–263, 2011.
[11]  B. Remy, Granular flow, segregation and agglomeration in bladed mixers [Ph.D. thesis], Rutgers, The State University of New Jersey, 2010.
[12]  H. Berthiaux, K. Marikh, V. Mizonov, D. Ponomarev, and E. Barantzeva, “Modeling continuous powder mixing by means of the theory of Markov chains,” Particulate Science and Technology, vol. 22, no. 4, pp. 379–389, 2004.
[13]  O. S. Sudah, A. W. Chester, J. A. Kowalski, J. W. Beeckman, and F. J. Muzzio, “Quantitative characterization of mixing processes in rotary calciners,” Powder Technology, vol. 126, no. 2, pp. 166–173, 2002.
[14]  F. Boukouvala, F. J. Muzzio, and M. G. Ierapetritou, “Design space of pharmaceutical processes using data-driven-based methods,” Journal of Pharmaceutical Innovation, vol. 5, no. 3, pp. 119–137, 2010.
[15]  P. M. Portillo, M. G. Ierapetritou, and F. J. Muzzio, “Effects of rotation rate, mixing angle, and cohesion in two continuous powder mixers-A statistical approach,” Powder Technology, vol. 194, no. 3, pp. 217–227, 2009.
[16]  P. M. Portillo, F. J. Muzzio, and M. G. Ierapetritou, “Characterizing powder mixing processes utilizing compartment models,” International Journal of Pharmaceutics, vol. 320, no. 1-2, pp. 14–22, 2006.
[17]  P. M. Portillo, F. J. Muzzio, and M. G. Ierapetritou, “Using compartment modeling to investigate mixing behavior of a continuous mixer,” Journal of Pharmaceutical Innovation, vol. 3, no. 3, pp. 161–174, 2008.
[18]  Y. Gao, F. Muzzio, and M. G. Ierapetritou, “Investigation on the effect of blade patterns on continuous solid mixing performance,” The Canadian Journal of Chemical Engineering, vol. 89, pp. 969–984, 2010.
[19]  Y. Gao, A. Vanarase, F. Muzzio, and M. Ierapetritou, “Characterizing continuous powder mixing using residence time distribution,” Chemical Engineering Science, vol. 66, no. 3, pp. 417–425, 2011.
[20]  P. M. Portillo, F. J. Muzzio, and M. G. Ierapetritou, “Hybrid DEM-compartment modeling approach for granular mixing,” AIChE Journal, vol. 53, no. 1, pp. 119–128, 2007.
[21]  B. Freireich, J. Li, J. Litster, and C. Wassgren, “Incorporating particle flow information from discrete element simulations in population balance models of mixer-coaters,” Chemical Engineering Science, vol. 66, no. 16, pp. 3592–3604, 2011.
[22]  A. Dubey, A. Sarkar, M. Ierapetritou, C. R. Wassgren, and F. J. Muzzio, “Computational approaches for studying the granular dynamics of continuous blending processes, 1—DEM based methods,” Macromolecular Materials and Engineering, vol. 296, no. 3-4, pp. 290–307, 2011.
[23]  F. Boukouvala, A. Dubey, A. Vanarase, R. Ramachandran, F. J. Muzzio, and M. Ierapetritou, “Computational approaches for studying the granular dynamics of continuous blending processes, 2 population balance and data-based,” Macromolecular Materials and Engineering, vol. 297, pp. 9–19, 2012.
[24]  B. Remy, J. G. Khinast, and B. J. Glasser, “Discrete element simulation of free flowing grains in a four-bladed mixer,” AIChE Journal, vol. 55, no. 8, pp. 2035–2048, 2009.
[25]  A. Hassanpour, H. Tan, A. Bayly, P. Gopalkrishnan, B. Ng, and M. Ghadiri, “Analysis of particle motion in a paddle mixer using Discrete Element Method (DEM),” Powder Technology, vol. 206, no. 1-2, pp. 189–194, 2011.
[26]  Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technology, vol. 77, no. 1, pp. 79–87, 1993.
[27]  H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, “Discrete particle simulation of particulate systems: theoretical developments,” Chemical Engineering Science, vol. 62, no. 13, pp. 3378–3396, 2007.
[28]  M. Moakher, T. Shinbrot, and F. J. Muzzio, “Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders,” Powder Technology, vol. 109, no. 1–3, pp. 58–71, 2000.
[29]  O. S. Sudah, P. E. Arratia, A. Alexander, and F. J. Muzzio, “Simulation and experiments of mixing and segregation in a tote blender,” AIChE Journal, vol. 51, no. 3, pp. 836–844, 2005.
[30]  P. E. Arratia, N. H. Duong, F. J. Muzzio, P. Godbole, and S. Reynolds, “A study of the mixing and segregation mechanisms in the Bohle Tote blender via DEM simulations,” Powder Technology, vol. 164, no. 1, pp. 50–57, 2006.
[31]  T. Hotta, M. Naito, J. Szépv?lgyi, S. Endoh, and K. Nogi, “Effect of rotor shape on particle composite process by a high-speed elliptical-rotor-type mixer,” Kagaku Kogaku Ronbunshu, vol. 27, no. 1, pp. 142–143, 2001.
[32]  J. Kano, H. Yabune, H. Mio, and F. Saito, “Grinding of talc particulates by a high-speed rotor mixer,” Advanced Powder Technology, vol. 12, no. 2, pp. 207–214, 2001.
[33]  M. A. I. Schutyser, W. J. Briels, A. Rinzema, and R. M. Boom, “Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation,” Biotechnology and Bioengineering, vol. 84, no. 1, pp. 29–39, 2003.
[34]  R. L. Stewart, J. Bridgwater, Y. C. Zhou, and A. B. Yu, “Simulated and measured flow of granules in a bladed mixer- A detailed comparison,” Chemical Engineering Science, vol. 56, no. 19, pp. 5457–5471, 2001.
[35]  B. Chaudhuri, F. J. Muzzio, and M. S. Tomassone, “Modeling of heat transfer in granular flow in rotating vessels,” Chemical Engineering Science, vol. 61, no. 19, pp. 6348–6360, 2006.
[36]  A. B. Yu, “Discrete element method: an effective way for particle scale research of particulate matter,” Engineering Computations, vol. 21, no. 2–4, pp. 205–214, 2004.
[37]  M. Sen and R. Ramachandran, “A multi-dimensional population balance model approach to continuous powder mixing processes,” Advanced Powder Technology, vol. 24, no. 1, pp. 51–59, 2013.
[38]  M. Oh and C. C. Pantelides, “A modelling and simulation language for combined lumped and distributed parameter systems,” Computers and Chemical Engineering, vol. 20, no. 6-7, pp. 611–633, 1996.
[39]  M. L. Winkel, L. C. Zullo, P. J. T. Verheijen, and C. C. Pantelides, “Modelling and simulation of the operation of an industrial batch plant using gPROMS,” Computers and Chemical Engineering, vol. 19, no. 1, pp. 571–576, 1995.
[40]  F. Puel, G. Févotte, and J. P. Klein, “Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1: a resolution algorithm based on the method of classes,” Chemical Engineering Science, vol. 58, no. 16, pp. 3715–3727, 2003.
[41]  R. Gunawan, I. Fusman, and R. D. Braatz, “High resolution algorithms for multidimensional population balance equations,” AIChE Journal, vol. 50, no. 11, pp. 2738–2749, 2004.
[42]  C. D. Immanuel and F. J. Doyle, “Solution technique for a multi-dimensional population balance model describing granulation processes,” Powder Technology, vol. 156, no. 2-3, pp. 213–225, 2005.
[43]  R. Ramachandran, C. D. Immanuel, F. Stepanek, J. D. Litster, and F. J. Doyle, “A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation,” Chemical Engineering Research and Design, vol. 87, no. 4, pp. 598–614, 2009.
[44]  R. Ramachandran and P. I. Barton, “Effective parameter estimation within a multi-dimensional population balance model framework,” Chemical Engineering Science, vol. 65, no. 16, pp. 4884–4893, 2010.
[45]  R. Ramachandran, M. A. Ansari, A. Chaudhury, A. Kapadia, A. V. Prakash, and F. Stepanek, “A quantitative assessment of the influence of primary particle size distribution on granule inhomogeneity,” Chemical Engineering Science, vol. 71, pp. 104–110, 2011.
[46]  D. Ramkrishna, Population Balances, Academic Press, San Diego, Calif, USA, 2000.
[47]  A. Dubey, A. U. Vanarase, and F. J. Muzzio, “Effect of process parameters on the performance of a continuous blender: a DEM based study,” AIChE Journal, vol. 58, p. 3676, 2012.
[48]  A. U. Vanarase, M. Alcalà, J. I. Jerez Rozo, F. J. Muzzio, and R. J. Roma?ach, “Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy,” Chemical Engineering Science, vol. 65, no. 21, pp. 5728–5733, 2010.
[49]  Y. Gao, F. Muzzio, and M. Ierapetritou, “Characterization of feeder effects on continuous solid mixing using fourier series analysis,” AIChE Journal, vol. 57, no. 5, pp. 1144–1153, 2011.
[50]  A. U. Vanarase and F. J. Muzzio, “Effect of operating conditions and design parameters in a continuous powder mixer,” Powder Technology, vol. 208, no. 1, pp. 26–36, 2011.
[51]  M. Sen, R. Singh, A. Vanarase, J. John, and R. Ramachandran, “Multi-dimensional population bal- ance modeling and experimental validation of continuous powder mixing processes,” Chemical Engineering Science, vol. 80, pp. 349–360, 2012.
[52]  R. Gunawan, I. Fusman, and R. D. Braatz, “Parallel high-resolution finite volume simulation of particulate processes,” AIChE Journal, vol. 54, no. 6, pp. 1449–1458, 2008.
[53]  S. Ganesan and L. Tobiska, “An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems,” Chemical Engineering Science, vol. 69, pp. 59–68, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413