全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Myometrial Concentrations of Oestrogen and Progesterone Receptors in the Lower Uterine Segment of Full-Term Pregnancies in Presence or Absence of Labour

DOI: 10.1155/2013/213193

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To assess the concentration of progesterone (PRs) and oestrogen (ORs) receptors of myometrium of full-term pregnant women in the myometrium of lower segment of the uterus in relationship with presence or absence of labour. Methods. This was a cross-sectional prospective study with 21 pregnant women, being 6 in labour (Group I) and 15 without labour (Group II). The biopsy of myometrium was realized during caesarian section, and the excised tissue was stained using immunohistochemical techniques for the quantification of the receptors, and with the aid of image-analysis software, the numbers of receptors for each hormone were determined spectrophotometrically. The Mann-Whitney test was used to compare the pregnant women in each study group with respect to the numbers of ORs and PRs. The Wilcoxon test was used to compare the concentration of ORs and PRs in each group separately. Results. The mean of gestational age was 39 weeks, (range, 37 to 41 weeks). The medians of PRs and ORs in pregnant women in labour (Group I) were 29.3 (range, 24.6–30.2) and 32.3 (range, 22.9–49.0), respectively. The medians of PRs and ORs in pregnant women without labour (Group II) were 43.6 (range, 23.6–70) and 43.9 (range, 18.3–62.6), respectively. We did not observe significant differences of the number of ORs and PRs in both groups ( and 0.37, resp.). The number of ORs was statistically more than that of PRs in Group II (Z calculated?=?16.00). Conclusion. The concentrations of PRs and ORs were similar in the myometrium of the lower uterine segment of pregnant women during and without labour, but the concentration of ORs was more than that of PRs in the myometrium of the lower uterine segment of pregnant women without labour. 1. Introduction Hormonal changes at the moment of parturition may constitute an important regulatory mechanism for myometrial contraction. In some species (e.g., sheep), sudden changes in circulating cortisol, oestrogen, and progesterone appear to be important factors for the onset of labour, whereas in humans, these signs remain unknown [1–10]. Therefore, we investigated the concentration of oestrogen receptors (ORs) and progesterone receptors (PRs) in pregnant human women because local modifications of these receptors may be associated with the myometrial conditions responsible for the mechanism of parturition [1–10]. Prior studies on hormone concentrations during labour have failed to demonstrate significant changes indicating their direct involvement in labour; however, local changes in hormone receptors are believed to be responsible for

References

[1]  M. L. Casey and P. C. MacDonald, “Molecular and cellular aspects,” in Uterine Function, M. E. Carsten and J. D. Miller, Eds., pp. 501–507, Plenum Press, New York, NY, USA, 1990.
[2]  R. Erny, A. Pigne, C. Prouvost, et al., “The effects of oral administration of progesterone for premature labor,” American Journal of Obstetrics and Gynecology, vol. 154, no. 3, pp. 525–529, 1986.
[3]  E. B. da Fonseca, R. E. Bittar, M. H. B. Carvalho, and M. Zugaib, “Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study,” American Journal of Obstetrics and Gynecology, vol. 188, no. 2, pp. 419–424, 2003.
[4]  G. Huszar and M. P. Walsh, “Biochemistry of the myometrium and cervix,” in Biology of the Uterus, R. M. Wynn and W. P. Jollie, Eds., pp. 355–402, Plenum Press, New York, NY, USA, 2nd edition, 1989.
[5]  C. R. Mendelson, “Fetal-maternal hormonal signaling in pregnancy and labor,” Molecular Endocrinology, vol. 23, no. 7, pp. 947–954, 2009.
[6]  A. A. Merlino, T. N. Welsh, H. Tan et al., “Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 5, pp. 1927–1933, 2007.
[7]  A. A. Merlino, T. Welsh, T. Erdonmez et al., “Nuclear progesterone receptor expression in the human fetal membranes and decidua at term before and after labor,” Reproductive Sciences, vol. 16, no. 4, pp. 357–363, 2009.
[8]  M. Rezapour, T. B?ckstr?m, B. Lindblon, et al., “Sex steroid receptors and human parturition,” Obstetrics & Gynecology, vol. 89, no. 6, pp. 918–924, 1997.
[9]  S. M. Yellon, A. E. Burns, J. L. See, T. J. Lechuga, and M. A. Kirby, “Progesterone withdrawal promotes remodeling processes in the nonpregnant mouse cervix,” Biology of Reproduction, vol. 81, no. 1, pp. 1–6, 2009.
[10]  M. Winkler, B. Kemp, I. Classen-Linke et al., “Estrogen receptor α and progesterone receptor A and B concentration and localization in the lower uterine segment in term parturition,” Journal of the Society for Gynecologic Investigation, vol. 9, no. 4, pp. 226–232, 2002.
[11]  P. Hatthachote and J. I. Gillespie, “Complex interactions between sex steroids and cytokines in the human pregnant myometrium: evidence for an autocrine signaling system at term,” Endocrinology, vol. 140, no. 6, pp. 2533–2540, 1999.
[12]  T. Padayachi, R. J. Pegoraro, L. Rom, and S. M. Joubert, “Enzyme immunoassay of oestrogen and progesterone receptors in uterine and intrauterine tissue during human pregnancy and labour,” Journal of Steroid Biochemistry and Molecular Biology, vol. 37, no. 4, pp. 509–511, 1990.
[13]  S. Andersson, D. Minjarez, N. P. Yost, et al., “Estrogen and progesterone metabolism in the cervix during pregnancy and parturition,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 6, pp. 2366–2374, 2008.
[14]  F. Facchinetti, I. Neri, and A. R. Genazzani, “Factors predicting labour onset in patients treated with prostaglandin E2 for cervical ripening,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 60, no. 2, pp. 129–132, 1995.
[15]  B. F. Mitchell and M. J. Taggart, “Are animal models relevant to key aspects of human parturition?” American Journal of Physiology, vol. 297, no. 3, pp. R525–R545, 2009.
[16]  R. Goeree, M. Hannah, and S. Hewson, “Beneficial cost for labor induction versus serial prenatal monitoring, in a Canadian multicentral study of post term pregnancy,” Canadian Medical Association Journal, vol. 152, pp. 144–150, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133