Background. Women with a history of gestational diabetes mellitus (GDM) are at increased risk for metabolic syndrome (MeS) after delivery. We studied the prevalence of MeS at one year postpartum among Finnish women who in early pregnancy were at increased risk of developing GDM. Methods. This follow-up study is a part of a GDM prevention trial. At one year postpartum, 150 women (mean age 33.1 years, BMI 27.2?kg/m2) were evaluated for MeS. Results. The prevalence of MeS was 18% according tothe International Diabetes Federation(IDF) criteria and 16% according toNational Cholestrol Education Program(NCEP) criteria. Of MeS components, 74% of participants had an increased waist circumference (≥80?cm). Twenty-seven percent had elevated fasting plasma glucose (≥5.6?mmol/L), and 29% had reduced HDL cholesterol (≤1.3?mmol/L). The odds ratio for the occurrence of MeS at one year postpartum was 3.0 (95% CI 1.0–9.2) in those who were overweight before pregnancy compared to normal weight women. Conclusions. Nearly one-fifth of the women with an increased risk of GDM in early pregnancy fulfilled the criteria of MeS at one year postpartum. The most important factor associated with MeS was prepregnancy overweight. Weight management before and during pregnancy is important for preventing MeS after delivery. 1. Introduction Metabolic syndrome (MeS) is defined as a cluster of atherosclerotic risk factors, including abdominal obesity, elevated serum triglycerides, decreased HDL cholesterol, elevated blood pressure, and elevated serum plasma glucose [1–3]. Insulin resistance is a central feature in the pathogenesis of MeS [4] in addition to an unhealthy diet and physical inactivity promoting overweight and genetic factors [1, 5–7]. As obesity increases worldwide, this leads to an increased incidence and an earlier onset of MeS [3, 8, 9]. Gestational diabetes mellitus (GDM), a disorder in glucose and insulin metabolism, is one of the most common complications in pregnancy [10]. Depending on the population and the diagnostic criteria used, the prevalence is roughly 1%–14% of pregnancies [10, 11]; and the occurrence is increasing worldwide [12, 13]. The most important risk factors for GDM are prepregnancy overweight, high maternal age and a family history of type 2 diabetes [14]. Women with a history of GDM are at increased risk of developing type 2 diabetes and also MeS after delivery [15–17]. Among Canadian women with a history of GDM, the prevalence of MeS was 20% at as early as three months postpartum [18]. According to studies from the USA and Denmark, approximately
References
[1]
M. A. Pereira, T. E. Kottke, C. Jordan, P. J. O'Connor, N. P. Pronk, and R. Carreón, “Preventing and managing cardiometabolic risk: the logic for intervention,” International Journal of Environmental Research and Public Health, vol. 6, no. 10, pp. 2568–2584, 2009.
[2]
B. Balkau, P. Valensi, E. Eschwège, and G. Slama, “A review ofthemetabolic syndrome,” Diabetes and Metabolism, vol. 33, no. 6, pp. 405–413, 2007.
[3]
S. M. Grundy, “Metabolic syndrome pandemic,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 629–636, 2008.
[4]
D. Lann and D. LeRoith, “Insulin resistance as the underlying cause for the metabolic syndrome,” Medical Clinics of North America, vol. 91, no. 6, pp. 1063–1077, 2007.
[5]
M. R. Carnethon, C. M. Loria, J. O. Hill, S. Sidney, P. J. Savage, and K. Liu, “Risk factors for metabolic syndrome: the Coronary Artery Risk Development in Young Adults (CARDIA) study, 1985–2001,” Diabetes Care, vol. 27, no. 11, pp. 2707–2715, 2004.
[6]
K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009.
[7]
C. L. Edwardson, T. Gorely, M. J. Davies et al., “Association of sedentary behaviour with metabolic syndrome: a meta-analysis,” PLoS ONE, vol. 7, no. 4, Article ID e34916, 2012.
[8]
E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004.
[9]
G. Hu, J. Lindstr?m, P. Jousilahti et al., “The increasing prevalence of metabolic syndrome among finnish men and women over a decade,” The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 832–836, 2008.
[10]
American Diabetes Association, “Gestational diabetes mellitus,” Diabetes Care, vol. 27, supplement 1, pp. S88–S90, 2004.
[11]
S. Schneider, C. Bock, M. Wetzel, H. Maul, and A. Loerbroks, “The prevalence of gestational diabetes in advanced economies,” Journal of Perinatal Medicine, vol. 40, no. 5, pp. 511–520, 2012.
[12]
D. Dabelea, J. K. Snell-Bergeon, C. L. Hartsfield, K. J. Bischoff, R. F. Hamman, and R. S. McDuffie, “Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM screening program,” Diabetes Care, vol. 28, no. 3, pp. 579–584, 2005.
[13]
A. Ferrara, “Increasing prevalence of gestational diabetes mellitus: a public health perspective,” Diabetes Care, vol. 30, no. 2, pp. S141–S146, 2007.
[14]
American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 29, supplement 1, pp. S43–S48, 2006.
[15]
S. Bo, L. Monge, C. Macchetta et al., “Prior gestational hyperglycemia: a long-term predictor of the metabolic syndrome,” Journal of Endocrinological Investigation, vol. 27, no. 7, pp. 629–635, 2004.
[16]
S. D. Sullivan, J. G. Umans, and R. Ratner, “Gestational diabetes: implications for cardiovascular health,” Current Diabetes Report, vol. 12, no. 1, pp. 43–52, 2012.
[17]
B. Akinci, A. Celtik, S. Genc et al., “Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes,” Gynecological Endocrinology, vol. 27, no. 5, pp. 361–367, 2011.
[18]
R. Retnakaran, Y. Qi, P. W. Connelly, M. Sermer, B. Zinman, and A. J. G. Hanley, “Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 670–677, 2010.
[19]
A. Verma, C. M. Boney, R. Tucker, and B. R. Vohr, “Insulin resistance syndrome in women with prior history of gestational diabetes mellitus,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 7, pp. 3227–3235, 2002.
[20]
J. Lauenborg, E. Mathiesen, T. Hansen et al., “The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4004–4010, 2005.
[21]
R. Luoto, T. I. Kinnunen, M. Aittasalo et al., “Primary prevention of gestational diabetes mellitus and large-for-gestational-age newborns by lifestyle counseling: a cluster-randomized vontrolled trial,” PLoS Medicine, vol. 8, no. 5, Article ID e1001036, 2011.
[22]
R. M. Luoto, T. I. Kinnunen, M. Aittasalo et al., “Prevention of gestational diabetes: design of a cluster-randomized controlled trial and one-year follow-up,” BMC Pregnancy and Childbirth, vol. 10, article 39, 2010.
[23]
J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001.
[24]
American Diabetes Association, “Standards of medical care in diabetes—2012,” Diabetes Care, vol. 35, supplement 1, pp. S11–S63.
[25]
Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation, World Health Organization, 2006.
[26]
J. R. H. Raiko, J. S. A. Viikari, A. Ilmanen et al., “Follow-ups of the cardiovascular risk in young Finns study in 2001 and 2007: levels and 6-year changes in risk factors,” Journal of Internal Medicine, vol. 267, no. 4, pp. 370–384, 2010.
[27]
B. Akinci, A. Celtik, S. Yener, and S. Yesil, “Prediction of developing metabolic syndrome after gestational diabetes mellitus,” Fertility and Sterility, vol. 93, no. 4, pp. 1248–1254, 2010.
[28]
M. Peltonen, K. Harald, S. M?nnist? et al., “The National FINRISK 2007 Study. Statistics,” Publications of the National Public Health Institute B35/2008, 2008.
[29]
S. A. Ritchie and J. M. C. Connell, “The link between abdominal obesity, metabolic syndrome and cardiovascular disease,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 4, pp. 319–326, 2007.
[30]
M. M. Finucane, G. A. Stevens, M. J. Cowan et al., “National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants,” The Lancet, vol. 377, no. 9765, pp. 557–567, 2011.
[31]
T. Kinnunen, J. Puhkala, J. Raitanen et al., “Effects of dietary counselling on food habits and dietary intake of Finnish pregnant women at increased risk for gestational diabetes—a secondary analysis of a cluster-randomized controlled trial,” Maternal & Child Nutrition, 2012.
[32]
T. I. Kinnunen, M. Pasanen, M. Aittasalo et al., “Preventing excessive weight gain during pregnancy—a controlled trial in primary health care,” European Journal of Clinical Nutrition, vol. 61, no. 7, pp. 884–891, 2007.
[33]
M. Aittasalo, J. Raitanen, T. I. Kinnunen, K. Ojala, P. Kolu, and R. Luoto, “Is intensive counseling in maternity care feasible and effective in promoting physical activity among women at risk for gestational diabetes? Secondary analysis of a cluster randomized NELLI study in Finland,” The International Journal of Behavioral Nutrition and Physical Activity, 2012.