全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Confidence Intervals for the Coefficient of Variation in a Normal Distribution with a Known Population Mean

DOI: 10.1155/2013/324940

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents three confidence intervals for the coefficient of variation in a normal distribution with a known population mean. One of the proposed confidence intervals is based on the normal approximation. The other proposed confidence intervals are the shortest-length confidence interval and the equal-tailed confidence interval. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. Simulation results have shown that all three proposed confidence intervals perform well in terms of coverage probability and expected length. 1. Introduction The coefficient of variation of a distribution is a dimensionless number that quantifies the degree of variability relative to the mean [1]. It is a statistical measure for comparing the dispersion of several variables obtained by different units. The population coefficient of variation is defined as a ratio of the population standard deviation to the population mean given by . The typical sample estimate of is given as where is the sample standard deviation, the square root of the unbiased estimator of population variance, and is the sample mean. The coefficient of variation has been widely used in many areas such as science, medicine, engineering, economics, and others. For example, the coefficient of variation has also been employed by Ahn [2] to analyze the uncertainty of fault trees. Gong and Li [3] assessed the strength of ceramics by using the coefficient of variation. Faber and Korn [4] applied the coefficient of variation as a way of including a measure of variation in the mean synaptic response of the central nervous system. The coefficient of variation has also been used to assess the homogeneity of bone test samples to help determine the effect of external treatments on the properties of bones [5]. Billings et al. [6] used the coefficient of variation to study the impact of socioeconomic status on hospital use in New York City. In finance and actuarial science, the coefficient of variation can be used as a measure of relative risk and a test of the equality of the coefficients of variation for two stocks [7]. Furthermore, Pyne et al. [8] studied the variability of the competitive performance of Olympic swimmers by using the coefficient of variation. Although the point estimator of the population coefficient of variation shown in (1) can be a useful statistical measure, its confidence interval is more useful than the point estimator. A confidence interval provides much more information about the population

References

[1]  K. Kelley, “Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach,” Behavior Research Methods, vol. 39, no. 4, pp. 755–766, 2007.
[2]  K. Ahn, “On the use of coefficient of variation for uncertainty analysis in fault tree analysis,” Reliability Engineering and System Safety, vol. 47, no. 3, pp. 229–230, 1995.
[3]  J. Gong and Y. Li, “Relationship between the Estimated Weibull Modulus and the Coefficient of Variation of the Measured Strength for Ceramics,” Journal of the American Ceramic Society, vol. 82, no. 2, pp. 449–452, 1999.
[4]  D. S. Faber and H. Korn, “Applicability of the coefficient of variation method for analyzing synaptic plasticity,” Biophysical Journal, vol. 60, no. 5, pp. 1288–1294, 1991.
[5]  A. J. Hammer, J. R. Strachan, M. M. Black, C. Ibbotson, and R. A. Elson, “A new method of comparative bone strength measurement,” Journal of Medical Engineering and Technology, vol. 19, no. 1, pp. 1–5, 1995.
[6]  J. Billings, L. Zeitel, J. Lukomnik, T. S. Carey, A. E. Blank, and L. Newman, “Impact of socioeconomic status on hospital use in New York City,” Health Affairs, vol. 12, no. 1, pp. 162–173, 1993.
[7]  E. G. Miller and M. J. Karson, “Testing the equality of two coefficients of variation,” in American Statistical Association: Proceedings of the Business and Economics Section, Part I, pp. 278–283, 1977.
[8]  D. B. Pyne, C. B. Trewin, and W. G. Hopkins, “Progression and variability of competitive performance of Olympic swimmers,” Journal of Sports Sciences, vol. 22, no. 7, pp. 613–620, 2004.
[9]  M. Smithson, “Correct confidence intervals for various regression effect sizes and parameters: the importance of noncentral distributions in computing intervals,” Educational and Psychological Measurement, vol. 61, no. 4, pp. 605–632, 2001.
[10]  B. Thompson, “What future quantitative social science research could look like: confidence intervals for effect sizes,” Educational Researcher, vol. 31, no. 3, pp. 25–32, 2002.
[11]  J. H. Steiger, “Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis,” Psychological Methods, vol. 9, no. 2, pp. 164–182, 2004.
[12]  A. T. McKay, “Distribution of the coefficient of variation and the extended t distribution,” Journal of the Royal Statistics Society, vol. 95, no. 4, pp. 695–698, 1932.
[13]  E. C. Fieller, “A numerical test of the adequacy of A.T. McKay's approximation,” Journal of the Royal Statistical Society, vol. 95, no. 4, pp. 699–702, 1932.
[14]  B. Iglewicz, Some properties of the coefficient of variation [Ph.D. thesis], Virginia Polytechnic Institute, Blacksburg, Va, USA, 1967.
[15]  B. Iglewicz and R. H. Myers, “Comparisons of approximations to the percentage points of the sample coefficient of variation,” Technometrics, vol. 12, no. 1, pp. 166–169, 1970.
[16]  E. S. Pearson, “Comparison of A.T. McKay's approximation with experimental sampling results,” Journal of the Royal Statistics Society, vol. 95, no. 4, pp. 703–704, 1932.
[17]  G. J. Umphrey, “A comment on McKay's approximation for the coefficient of variation,” Communications in Statistics-Simulation and Computation, vol. 12, no. 5, pp. 629–635, 1983.
[18]  M. G. Vangel, “Confidence intervals for a normal coefficient of variation,” American Statistician, vol. 50, no. 1, pp. 21–26, 1996.
[19]  W. Panichkitkosolkul, “Improved confidence intervals for a coefficient of variation of a normal distribution,” Thailand Statistician, vol. 7, no. 2, pp. 193–199, 2009.
[20]  K. K. Sharma and H. Krishna, “Asymptotic sampling distribution of inverse coefficient-of-variation and its applications,” IEEE Transactions on Reliability, vol. 43, no. 4, pp. 630–633, 1994.
[21]  E. G. Miller, “Asymptotic test statistics for coefficient of variation,” Communications in Statistics-Theory and Methods, vol. 20, no. 10, pp. 3351–3363, 1991.
[22]  K. C. Ng, “Performance of three methods of interval estimation of the coefficient of variation,” InterStat, 2006, http://interstat.statjournals.net/YEAR/2006/articles/0609002.pdf.
[23]  R. Mahmoudvand and H. Hassani, “Two new confidence intervals for the coefficient of variation in a normal distribution,” Journal of Applied Statistics, vol. 36, no. 4, pp. 429–442, 2009.
[24]  L. H. Koopmans, D. B. Owen, and J. I. Rosenblatt, “Confidence intervals for the coefficient of variation for the normal and lognormal distributions,” Biometrika, vol. 51, no. 1-2, pp. 25–32, 1964.
[25]  S. Verrill, “Confidence bounds for normal and log-normal distribution coefficient of variation,” Research Paper EPL-RP-609, U. S. Department of Agriculture, Madison, Wis, USA, 2003.
[26]  N. Buntao and S. Niwitpong, “Confidence intervals for the difference of coefficients of variation for lognormal distributions and delta-lognormal distributions,” Applied Mathematical Sciences, vol. 6, no. 134, pp. 6691–6704, 2012.
[27]  J. D. Curto and J. C. Pinto, “The coefficient of variation asymptotic distribution in the case of non-iid random variables,” Journal of Applied Statistics, vol. 36, no. 1, pp. 21–32, 2009.
[28]  M. Gulhar, B. M. G. Kibria, A. N. Albatineh, and N. U. Ahmed, “A comparison of some confidence intervals for estimating the population coefficient of variation: a simulation study,” SORT, vol. 36, no. 1, pp. 45–68, 2012.
[29]  J. A. Rice, Mathematical Statistics and Data Analysis, Duxbury Press, Belmont, Calif, USA, 2006.
[30]  S. F. Arnold, Mathematical Statistics, Prentice-Hall, New Jersey, NJ, USA, 1990.
[31]  E. J. Dudewicz and S. N. Mishra, Modern Mathematical Statistics, John Wiley & Sons, Singapore, 1988.
[32]  R. L. Graham, D. E. Knuth, and O. Patashink, Answer to Problem 9.60 in Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, Pa, USA, 1994.
[33]  G. Casella and R. L. Berger, Statistical Inference, Duxbury Press, California, Calif, USA, 2001.
[34]  R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996.
[35]  R Development Core Team, An Introduction to R, R Foundation for Statistical Computing, Vienna, Austria, 2013.
[36]  R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
[37]  E. Ziegler, S. E. Nelson, and J. M. Jeter, Early Iron Supplementation of Breastfed Infants, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA, 2007.
[38]  J. Ledolter and R. V. Hogg, Applied Statistics for Engineers and Physical Scientists, Pearson, New Jersey, NJ, USA, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413